Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In...Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.展开更多
基金This work was supported by the National Key Basic Research Program of China (No.2013CB921800), the National Natural Science Foundation of China (No.11374291, No.11311120047, No.11274299, No.11447197, and No.11204292), the Fundamen- tal Research Funds for the Central Universities (No.WK20304200), the Anhui Provincial Natural Science Foundation (No.1508085QA09). The numerical calculations have been partially done on the super- computing system in the Supercomputing Center of University of Science and Technology of China.
文摘Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.