In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a s...In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O.展开更多
Li-O_(2) batteries provide an attractive and potential strategy for energy conversion and storage with high specific energy densities.However,large over-potential in oxygen evolution reactions (OER) caused by the deco...Li-O_(2) batteries provide an attractive and potential strategy for energy conversion and storage with high specific energy densities.However,large over-potential in oxygen evolution reactions (OER) caused by the decomposition obstacles of Li_(2)O_(2) seriously impedes its electrochemical performances.Herein,a novel N,O,S and F co-doping vesicular carbon was prepared by self-template pyrolysis method and used in LiO_(2) battery to tune the nucleation and decomposition of Li_(2)O_(2).The introduction of F in the carbon matrix with suitable content can regulate the adsorption of intermediates,through which the morphology of Li_(2)O_(2) can be controlled to film,favorable to its decomposition in charge process.The cathode based on the optimized F doped carbon vesicle exhibits improved electrochemical performances including a low over-potential,large capacity and a long-term stability.Density functional theory (DFT) results show that F and C in C–F bond hasve a strong interaction to Li and O in Li_(2)O_(2),respectively,which can enhance the transfer of electrons from Li_(2)O_(2) to the carbon matrix to generate hole polaron and thus accelerate the delithiation and decomposition of Li_(2)O_(2).This work provides a new sight into understanding the mechanism of nucleation and decomposition of Li_(2)O_(2) for the development of high-performance Li-O_(2) batteries.展开更多
Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes cau...Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes causes unstable cyclability.In this study,in order to address this problem,(100-x)Li7P3S11-xLi2OHBr(x=0,2,5,10,20,30,40,and 50)electrolytes are prepared by a high energy ball-milling technique and heat-treatment process.The resulting(100-x)Li7P3S11-xLi2OHBr(x=2,5,10,20,30,40,and 50)electrolytes provide improved electrochemical performance with good cycling stability and a wide electrochemical window of up to 10 V(vs.Li/Li+).Moreover,these electrolytes have high ionic conductivity of 10-4–10-5S/cm at room temperature.Particularly,the 90Li7P3S11-10Li2OHBr electrolyte displays the highest conductivity of 4.4×10-4S/cm at room temperature as well as improved cyclability.Moreover,90Li7P3S11-10Li2OHBr shows decreased interfacial resistance between the solid electrolyte and cathode electrode,which was revealed by Electrochemical Impedance Spectroscopy(EIS)analysis.The initial discharge capacity of 90Li7P3S11-10Li2OHBr was found to be 135 m Ah/g when used in a In|solid electrolyte|Li(Ni0.6Co0.2Mn0.2)O2 all-solid-state lithium battery(ASSLB).Thus,we can conclude the addition of Li2OHBr into the Li7P3S11results in enhanced electrochemical properties.展开更多
基金Funded by the Zhejiang Provincial Key Research and Development Project(No.2018C01076)。
文摘In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O.
基金financially supported by the National Natural Science Foundation of China(Grant No.21701145)the China Postdoctoral Science Foundation(Grant Nos.2017M610459,2018T110739)。
文摘Li-O_(2) batteries provide an attractive and potential strategy for energy conversion and storage with high specific energy densities.However,large over-potential in oxygen evolution reactions (OER) caused by the decomposition obstacles of Li_(2)O_(2) seriously impedes its electrochemical performances.Herein,a novel N,O,S and F co-doping vesicular carbon was prepared by self-template pyrolysis method and used in LiO_(2) battery to tune the nucleation and decomposition of Li_(2)O_(2).The introduction of F in the carbon matrix with suitable content can regulate the adsorption of intermediates,through which the morphology of Li_(2)O_(2) can be controlled to film,favorable to its decomposition in charge process.The cathode based on the optimized F doped carbon vesicle exhibits improved electrochemical performances including a low over-potential,large capacity and a long-term stability.Density functional theory (DFT) results show that F and C in C–F bond hasve a strong interaction to Li and O in Li_(2)O_(2),respectively,which can enhance the transfer of electrons from Li_(2)O_(2) to the carbon matrix to generate hole polaron and thus accelerate the delithiation and decomposition of Li_(2)O_(2).This work provides a new sight into understanding the mechanism of nucleation and decomposition of Li_(2)O_(2) for the development of high-performance Li-O_(2) batteries.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A3B070050296)。
文摘Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes causes unstable cyclability.In this study,in order to address this problem,(100-x)Li7P3S11-xLi2OHBr(x=0,2,5,10,20,30,40,and 50)electrolytes are prepared by a high energy ball-milling technique and heat-treatment process.The resulting(100-x)Li7P3S11-xLi2OHBr(x=2,5,10,20,30,40,and 50)electrolytes provide improved electrochemical performance with good cycling stability and a wide electrochemical window of up to 10 V(vs.Li/Li+).Moreover,these electrolytes have high ionic conductivity of 10-4–10-5S/cm at room temperature.Particularly,the 90Li7P3S11-10Li2OHBr electrolyte displays the highest conductivity of 4.4×10-4S/cm at room temperature as well as improved cyclability.Moreover,90Li7P3S11-10Li2OHBr shows decreased interfacial resistance between the solid electrolyte and cathode electrode,which was revealed by Electrochemical Impedance Spectroscopy(EIS)analysis.The initial discharge capacity of 90Li7P3S11-10Li2OHBr was found to be 135 m Ah/g when used in a In|solid electrolyte|Li(Ni0.6Co0.2Mn0.2)O2 all-solid-state lithium battery(ASSLB).Thus,we can conclude the addition of Li2OHBr into the Li7P3S11results in enhanced electrochemical properties.