期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
Electrochemical performance of LiFePO_4/(C+Fe_2P) composite cathode material synthesized by sol-gel method 被引量:2
1
作者 陈权启 李小栓 王建明 《Journal of Central South University》 SCIE EI CAS 2011年第4期978-984,共7页
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical perf... A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively. 展开更多
关键词 lifepo4/c+Fe2P) composite sol-gel sphere-like morphology electrochemical performance
下载PDF
Hydrothermal synthesis of spindle-like Li_2FeSiO_4-C composite as cathode materials for lithium-ion batteries 被引量:4
2
作者 Haiyan Gao Zhe Hu +3 位作者 Kai Zhang Fangyi Cheng Zhanliang Tao Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期274-281,共8页
In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2F... In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries. 展开更多
关键词 Li2FeSiO4-c composite spindle like hydrothermal synthesis cathode material lithium-ion battery
下载PDF
Electrochemical performance of LiFePO_(4)-Li_(3)V_(2)(PO_4)_3 composite material prepared by solid-hydrothermal method 被引量:1
3
作者 郭孝东 钟本和 +3 位作者 刘恒 宋杨 文嘉杰 唐艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1761-1766,共6页
LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantl... LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantly improved compared with LiFePO4(LFP) and Li3V2(PO4)3(LVP),and it was also much better than that of the ball-milled LiFePO4-Li3V2(PO4)3(P-LFVP).C-LFVP and P-LFVP both had four REDOX peaks(voltage plateaus),which coincided with that of LFP and LVP.Some new trace substances were found in C-LFVP which had more perfect morphology,this was responsible for the better electrochemical performance of C-LFVP than P-LFVP. 展开更多
关键词 lifepo4 Li3V2(PO4)3 composite materials solid-hydrothermal
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
4
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 lifepo4/c cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Synthesis and electrochemical performances of spherical LiFePO_4 cathode materials for Li-ion batteries 被引量:6
5
作者 ZHOU Jianxin SHEN Xiangqian JING Maoxiang ZHAN Yun 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期19-24,共6页
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precu... Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity. 展开更多
关键词 spherical lifepo4 lifepo4/c composite cO-PREcIPITATION cathode material Li-ion battery
下载PDF
A novel synthetic route for LiFePO_4/C cathode materials by addition of starch for lithium-ion batteries 被引量:5
6
作者 Shao Hua Luo, Zi Long Tang, Jun Biao Lu, Zhong Tai Zhang State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第2期237-240,共4页
LiFePO4/Carbon composite cathode material was prepared using starch as carbon source by spray-pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM, Raman, and their electrochemical perf... LiFePO4/Carbon composite cathode material was prepared using starch as carbon source by spray-pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM, Raman, and their electrochemical performance was investigated in terms of cycling behavior. There has a special micro-morphology via the process, which is favorable to electrochemical properties. The discharge capacity of the LiFePO4.C composite was 170 mAh g-1, equal to the theoretical specific capacity at 0.1 C rate. At 4 C current density, the specific capacity was about 80 mAh g-1, which can satisfy for transportation applications if having a more flat discharge flat. 展开更多
关键词 Lithium-ion batteries cathode material carbon coated lifepo4 Spray-pelleting
下载PDF
One Step Ball-Milling Synthesis of LiFePO_ 4 Nanoparticles as the Cathode Material of Li-Ion Batteries 被引量:3
7
作者 AI Xinping LI Hai +3 位作者 LI Xiaoyan LIAO Qinli LIU Bingdong YANG Hanxi 《Wuhan University Journal of Natural Sciences》 CAS 2006年第3期687-690,共4页
A one-step synthetic method was used to synthesize Olivline LiFePO4 powders by direct ball milling the stoichiometric mixture of Fe, Li3PO4 , and FePO4 powders. XRD and TEM measurements revealed that the as-prepared L... A one-step synthetic method was used to synthesize Olivline LiFePO4 powders by direct ball milling the stoichiometric mixture of Fe, Li3PO4 , and FePO4 powders. XRD and TEM measurements revealed that the as-prepared LiFePO4 powder have a homogeneous Olivine structure and a uniform size distribution of ca. 50 nm. Based on this material, a LiFePO4/C composite was prepared and used for the cathode material of Li-ion batteries. The charge-discharge experiments demonstrated that the LiFePO4/C composite material has a high capacity of 132 mAh/g at 0.1 C and a quite highrate capability of 95 mAh/g at 1 C. This new ball-milling method may provide a completely green synthetic route for preparing the materials of this type cost-effectively and in large volume. 展开更多
关键词 lifepo4 cathode material ball millings onestep synthesis green synthesis
下载PDF
Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy 被引量:2
8
作者 Hui Tong Yi Li +4 位作者 Gaoqiang Mao Chaolei Wang Wanjing Yu Yong Liu Mudan Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1162-1170,共9页
With the number of decommissioned electric vehicles increasing annually,a large amount of discarded power battery cathode material is in urgent need of treatment.However,common leaching methods for recovering metal sa... With the number of decommissioned electric vehicles increasing annually,a large amount of discarded power battery cathode material is in urgent need of treatment.However,common leaching methods for recovering metal salts are economically inefficient and polluting.Meanwhile,the recycled material obtained by lithium remediation alone has limited performance in cycling stability.Herein,a short method of solid-phase reduction is developed to recover spent LiFePO4 by simultaneously introducing Mg2+ions for hetero-atom doping.Issues of particle agglomeration,carbon layer breakage,lithium loss,and Fe3+defects in spent LiFePO4 are also addressed.Results show that Mg2+addition during regeneration can remarkably enhance the crystal structure stability and improve the Li+diffusion coefficient.The regenerated LiFePO4 exhibits significantly improved electrochemical performance with a specific discharge capacity of 143.2 mAh·g^(−1)at 0.2 C,and its capacity retention is extremely increased from 37.9%to 98.5%over 200 cycles at 1 C.Especially,its discharge capacity can reach 95.5 mAh·g^(−1)at 10 C,which is higher than that of spent LiFePO4(55.9 mAh·g^(−1)).All these results show that the proposed regeneration strategy of simultaneous carbon coating and Mg2+doping is suitable for the efficient treatment of spent LiFePO4. 展开更多
关键词 spent lifepo4 solid-phase reduction repair and regeneration cathode materials lithium-ion batteries
下载PDF
Physical and Electrochemical Properties of Doped LiFePO4 as Cathode Material for Lithium-Ion Batteries 被引量:1
9
作者 Yao Yongxun Duan Zhenzhong Li Yuenan Gu Hongwei Hua Zhiqiang Luan Wenzhou Wang Yuan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第z2期123-125,共3页
LiFePO4 cathode material was synthesized by a solid-state reaction using doping several elements (Nb5 + ,Zr4 + ). The starting materials were mixed with a high-efficient sander and treated thermally under flowing N2. ... LiFePO4 cathode material was synthesized by a solid-state reaction using doping several elements (Nb5 + ,Zr4 + ). The starting materials were mixed with a high-efficient sander and treated thermally under flowing N2. The samples were characterized by X-ray diffraction (XRD), field-emission gun electron microscopy (FEG), and their electrochemical performance was investigated in the term of cycling behavior. Room temperature discharge capacity about 140.6 mA·h·g-1 was obtained at C/5 rate. 展开更多
关键词 LITHIUM-ION batteries lifepo4 cathode material DIScHARGE capacity
下载PDF
Effect of baking processes on properties of TiB_2/C composite cathode material 被引量:1
10
作者 吕晓军 李劼 +1 位作者 赖延清 方钊 《Journal of Central South University》 SCIE EI CAS 2009年第3期429-433,共5页
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of... Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material. 展开更多
关键词 aluminum electrolysis TiB2/c composite cathode material baking process
下载PDF
Synthesis of LiMnPO_4/C composite material for lithium ion batteries by sol-gel method 被引量:1
11
作者 钟胜奎 王友 +1 位作者 刘洁群 王健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2535-2540,共6页
The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to... The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C. 展开更多
关键词 lithium-ion battery cathode material sol-gel method LiMnPO4/c electrochemical performance
下载PDF
Characterization and Electrochemical Performance of ZnO Modified LiFePO_4/C Cathode Materials for Lithium-ion Batteries
12
作者 刘树信 殷恒波 +2 位作者 王海滨 何冀川 王洪 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第3期353-360,共8页
To improve the electrical conductivity of LiFePO4 cathode materials, the ZnO modified LiFePO4/C cathode materials are synthesized by a two-step process including solid state synthesis method and precipitation method. ... To improve the electrical conductivity of LiFePO4 cathode materials, the ZnO modified LiFePO4/C cathode materials are synthesized by a two-step process including solid state synthesis method and precipitation method. The structures and compositions of ZnO modified LiFePO4/C cathode materials are characterized and analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy, which indicates that the existence of ZnOhas little or no effect on the crystal structure, particles size and morphology of LiFePO4. The electrochemical performances are also characterized and analyzed with charge-discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the existence of ZnO improves the specific capability and lithium ion diffusion rate of LiFePO4 cathode materials and reduces the charge transfer resistance of cell, and the one with 3 wt% ZnO exhibits the best electrochemical performance. 展开更多
关键词 lifepo4 electrochemical performance cathode materials lithium-ion batteries surface modification
下载PDF
Synthesis and electrochemical properties of Li_(1-x)V_xCr_yFe_(1-x)PO_4/C as a cathode material 被引量:1
13
作者 Shi Tao Song Pei Hua Ma +2 位作者 Shi You Li Xiao Chuan Deng Chun Yan Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第3期337-341,共5页
Composites Li1-xVxCryFe1-yPO4/C(x=0.01, 0.02; y = 0.01, 0.02) were synthesized by solid-state reaction method. The influence of the content of doping vanadium and chromium on the structure of Li1-xVxCryFe1-yPO4/C wa... Composites Li1-xVxCryFe1-yPO4/C(x=0.01, 0.02; y = 0.01, 0.02) were synthesized by solid-state reaction method. The influence of the content of doping vanadium and chromium on the structure of Li1-xVxCryFe1-yPO4/C was investigated by XRD, while the morphology of powders was observed by SEM. The investigation of the electrochemical performances showed that the Li0.99V0.01Cr0.02Fe0.98PO4/C material has a higher capacity. At 0.1 C discharging rate, it is capable of delivering reversible specific capacity of 163.8 mAh/g with fairly stable cycleability. 展开更多
关键词 Li1-xVxcryFe1-yPO4/c cathode material Ion doping
下载PDF
Modified carbothermal reduction method for synthesis of LiFePO_4/C composite 被引量:1
14
作者 尹艳红 李少玉 +2 位作者 闫琳琳 张会双 杨书廷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期621-626,共6页
With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron mi... With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron micrograph shows that particle size of the product is about 1μm,smaller than that of the sample synthesized with Li2CO3 as Li precursor.Electrochemical measurements prove that LiFePO4/C obtained from LiAc-2H2O shows high capacity.The initial discharge capacities are 148 mA-h/g at 0.5C rate and 115 mA-h/g at 5C rate,respectively.After 50 cycles,the capacity retention ratios are 93% and 89% at 0.5C rate and 5C rate,respectively. 展开更多
关键词 lifepo4/c composite molten salt carbothermal reduction Β-cYcLODEXTRIN
下载PDF
Synthesis of LiFePO_4 using FeSO_4·7H_2O byproduct from TiO_2 production as raw material 被引量:2
15
作者 PENG Zhongdong CAO Yanbing ZHOU Yulin HU Guorong 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期612-617,共6页
As the byproduct of TiO2 industrial production, impure FeSO4.7H2O was used for the synthesis of LiFePO4. With the purified solution of FeSO4-7H2O, FePO4.xH2O was prepared by a normal titration method and a controlled ... As the byproduct of TiO2 industrial production, impure FeSO4.7H2O was used for the synthesis of LiFePO4. With the purified solution of FeSO4-7H2O, FePO4.xH2O was prepared by a normal titration method and a controlled crystallization method, respectively. Then LiFePO4 materials were synthesized by calcining the mixture of FePO4,xH2O, LizCO3, and glucose at 700℃ for 10 h in flowing Ar. The results indicate that the elimination of FeSO4.TH2O impurities reached over 95%, and using FePO4-xH2O prepared by the controlled crystallization method, the obtained LiFePO4 material has fine and sphere-like particles. The material delivers a higher initial discharge specific capacity of 149 mAh.g^-1 at a current density of 0.1C rate (1C = 170 mA.g^-0); the discharge specific capacity also maintains above 120 rnAh.g^-1 after 100 cycles even at 2C rate. Thus, the employed processing is promising for easy control, low cost of raw material, and high electrochemical performance of the prepared material. 展开更多
关键词 lithium ion battery cathode material lifepo4 FEPO4 controlled crystallization
下载PDF
Synthesis of nanostructured Li_2FeSiO_4/C cathode for lithium-ion battery by solution method 被引量:1
16
作者 杨蓉 刘晓艳 +2 位作者 曲冶 雷京 Jou-Hyeon AHN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2529-2534,共6页
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization... Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance. 展开更多
关键词 lithium-ion batteries cathode material Li2FeSiO4/c solution method
下载PDF
An olivine LiFe_(0.5)Mn_(0.5)PO_(4)/rGO composite cathode material prepared from manganese ore tailings with excellent lithium storage performance
17
作者 Wen-Han Xu Jin-Huan Yao +4 位作者 Qi-Ze Huang Shao-Shuai Bai Yan-Wei Li Ji-Qiong Jiang Jian-Wen Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第11期5664-5676,共13页
The high-value utilization of manganese ore tailings is of great significance for saving mineral resources and achieving environmental protection.Herein,an olivine LiFe_(0.5)Mn_(0.5)PO_(4)/rGO composite is synthesized... The high-value utilization of manganese ore tailings is of great significance for saving mineral resources and achieving environmental protection.Herein,an olivine LiFe_(0.5)Mn_(0.5)PO_(4)/rGO composite is synthesized by a simple precipitation method and subsequent high-temperature calcination process using the manganese ore tailings as raw material.The prepared LiFe_(0.5)Mn_(0.5)PO_(4)/rGO composite exhibits superior cycling stability(with 113.5 mAh·g^(-1)after 300 cycles at1.0C(1.0C=170 mA·g^(-1)))and superior rate performance(with 65.6 mAh·g^(-1)at 10.0C).Ex-situ XRD and electrochemical impedance spectroscopy(EIS)analyses evidence that the LiFe_(0.5)Mn_(0.5)PO_(4)/rGO material has excellent structural stability and electrochemical reversibility during charge and discharge processes.Furthermore,the LiFe_(0.5)Mn_(0.5)PO_(4)/rGO//graphite full Li-ion battery also exhibits excellent cycling stability indicating its potential commercialization value. 展开更多
关键词 Lithium-ion batteries cathode materials LiFe_(0.5)Mn_(0.5)PO_(4) Manganese ore tailings composite
原文传递
高密度锂离子电池正极复合材料LiFePO_4/C 被引量:18
18
作者 肖政伟 胡国荣 +2 位作者 杜柯 彭忠东 邓新荣 《中国有色金属学报》 EI CAS CSCD 北大核心 2007年第12期2040-2045,共6页
以FeC2O4·2H2O、NH4H2PO4、Li2CO3和乙炔黑为原料,采用两步固相反应法制备了高密度LiFePO4/C正极复合材料。利用差热(DSC),热重(TGA)和X射线衍射(XRD)等分析手段具体探讨了第一步固相反应中可能存在的反应过程和中间产物。利用扫... 以FeC2O4·2H2O、NH4H2PO4、Li2CO3和乙炔黑为原料,采用两步固相反应法制备了高密度LiFePO4/C正极复合材料。利用差热(DSC),热重(TGA)和X射线衍射(XRD)等分析手段具体探讨了第一步固相反应中可能存在的反应过程和中间产物。利用扫描电镜表征了复合材料LiFePO4/C中LiFePO4微粒形貌和接触状态。结果表明,乙炔黑的含量是影响LiFePO4微粒尺寸和微粒间接触界面的重要因素。在一次热处理的基础上,二次球磨和烧结有利于第二次固相反应过程中反应物质的接触和传质,较一步固相法提高了生成的LiFePO4的振实密度。当乙炔黑的含量(质量分数)为0.1%-1.5%时,两步固相法所制正极材料LiFePO4/C的振实密度可达到1.7 g/cm3,初次放电容量达到105 mA·h/g。 展开更多
关键词 锂离子电池 lifepo4/c复合材料 正极材料 高密度 两步固相反应
下载PDF
不同碳源对LiFePO_4/C复合材料性能的影响 被引量:12
19
作者 黄小倩 张培新 +5 位作者 许启明 李昕洋 任祥忠 罗仲宽 刘剑洪 洪伟良 《功能材料》 EI CAS CSCD 北大核心 2008年第7期1154-1157,共4页
采用机械液相活化法与高温固相法相结合制备了锂离子电池正极材料LiFePO4和LiFePO4/C。考察了蔗糖、柠檬酸、葡萄糖、酒石酸等不同碳源对材料性能的影响,并采用XRD、SEM和恒电流充放电测试等方法对材料的结构、表面形貌及电化学性能进... 采用机械液相活化法与高温固相法相结合制备了锂离子电池正极材料LiFePO4和LiFePO4/C。考察了蔗糖、柠檬酸、葡萄糖、酒石酸等不同碳源对材料性能的影响,并采用XRD、SEM和恒电流充放电测试等方法对材料的结构、表面形貌及电化学性能进行了研究,利用Raman光谱和TEM分析材料中碳的存在状态。结果表明,得到的样品结构均为橄榄石型,碳源的加入能有效地减小材料的颗粒尺寸,并且材料的电导率比纯LiFePO4的电导率提高了5个数量级。LiFePO4/C样品的表面包覆层均为非晶碳,以柠檬酸为碳源合成的LiFePO4/C材料,具有较小的颗粒尺寸,均匀多孔的表面碳包覆层和最佳的电化学性能。在0.1C下第3次的放电比容量达141.0mAh/g,循环10次后容量无衰减。 展开更多
关键词 正极材料 lifepo4/c复合材料 碳源 碳包覆 电化学性能
下载PDF
固相法合成LiFePO_4/C正极材料的电化学性能 被引量:9
20
作者 王国宝 王先友 +8 位作者 舒洪波 王英平 杨顺毅 刘修明 裴斧 王雁生 安红芳 郑丽萍 陈权启 《中国有色金属学报》 EI CAS CSCD 北大核心 2010年第12期2351-2356,共6页
以廉价原材料FeSO4·7H2O为铁源,以蔗糖为碳源,采用固相法合成了锂离子电池正极材料——LiFePO4/C复合材料。用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试技术对不同铁源合成的LiFePO4/C复合材料的结构、形貌和电化学性能进行研究... 以廉价原材料FeSO4·7H2O为铁源,以蔗糖为碳源,采用固相法合成了锂离子电池正极材料——LiFePO4/C复合材料。用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试技术对不同铁源合成的LiFePO4/C复合材料的结构、形貌和电化学性能进行研究。结果表明:合成的样品具有均一的橄榄石型结构,以FeSO4·7H2O为铁源合成的LiFePO4/C复合材料的循环性能和高倍率放电性能均优于以FeC2O4·2H2O为铁源合成的LiFePO4/C复合材料的;由FeSO4·7H2O合成的LiFePO4/C复合材料的5C倍率放电比容量为105.9mA·h/g,经循环30次后,容量仍高达105.2mA·h/g。 展开更多
关键词 lifepo4/c复合材料 铁源 锂离子电池 正极材料
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部