采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X...采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。展开更多
以醋酸锂、硝酸亚铁和磷酸二氢铵为主要原料,柠檬酸为溶剂和碳源,采用溶胶-凝胶法在氩气保护下合成橄榄石型LiFePO_4阴极材料.为了改善电池的电化学性能,在LiFePO_4阴极材料的制备过程中添加了氟和锌离子.采用扫描电镜、X线衍射光谱和...以醋酸锂、硝酸亚铁和磷酸二氢铵为主要原料,柠檬酸为溶剂和碳源,采用溶胶-凝胶法在氩气保护下合成橄榄石型LiFePO_4阴极材料.为了改善电池的电化学性能,在LiFePO_4阴极材料的制备过程中添加了氟和锌离子.采用扫描电镜、X线衍射光谱和恒电流充-放电测试系统分别表征了材料的微观结构、形貌和电化学性能.结果表明,氟和锌离子的添加能影响LiFePO_4作为锂离子电池阴极材料的微结构及电化学性能.在室温下,Li Fe_(1-y)Zn_y(PO_4)_(1-x/3)F_x/C(x=y=0.01)作为阴极材料制备的电池在0.1 C的倍率下放电,首次放电容量为166.0 m Ah·g^(-1),表明氟和锌离子共掺杂的材料在高倍率电流下具有更好的电化学性能.展开更多
采用湿法球磨法制备了锂离子电池混合正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NMC5...采用湿法球磨法制备了锂离子电池混合正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NMC532)和LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP)的容量衰减机理.结果表明,循环50次和60 o C高温存储后,NMC532/LFP的容量保持率分别为97.80%、86.48%,其循环和高温存储性能较好.循环和高温存储后NMC532和NMC532/LFP的电荷传递阻抗Rct明显增大,但NMC532/LFP的Rct较小.NMC532和NMC532/LFP的I(003)/I(104)值都有所减小,但NMC532/LFP的I(003)/I(104)值比NMC532的大,即NMC532/LFP材料的阳离子混排现象有所改善.循环后NMC532、NMC532/LFP颗粒没有出现明显的表面开裂和链接断裂现象,但NMC532颗粒有部分发生粉化.高温储存后NMC532颗粒表面出现裂纹,且颗粒之间的链接断裂,NMC532/LFP颗粒表面出现轻微粉化.材料结构规整度下降,阳离子混排程度加剧,电荷传递阻抗增大是NMC532和NMC532/LFP容量衰减的主要原因.展开更多
文摘采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。
文摘以醋酸锂、硝酸亚铁和磷酸二氢铵为主要原料,柠檬酸为溶剂和碳源,采用溶胶-凝胶法在氩气保护下合成橄榄石型LiFePO_4阴极材料.为了改善电池的电化学性能,在LiFePO_4阴极材料的制备过程中添加了氟和锌离子.采用扫描电镜、X线衍射光谱和恒电流充-放电测试系统分别表征了材料的微观结构、形貌和电化学性能.结果表明,氟和锌离子的添加能影响LiFePO_4作为锂离子电池阴极材料的微结构及电化学性能.在室温下,Li Fe_(1-y)Zn_y(PO_4)_(1-x/3)F_x/C(x=y=0.01)作为阴极材料制备的电池在0.1 C的倍率下放电,首次放电容量为166.0 m Ah·g^(-1),表明氟和锌离子共掺杂的材料在高倍率电流下具有更好的电化学性能.
文摘采用湿法球磨法制备了锂离子电池混合正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NMC532)和LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP)的容量衰减机理.结果表明,循环50次和60 o C高温存储后,NMC532/LFP的容量保持率分别为97.80%、86.48%,其循环和高温存储性能较好.循环和高温存储后NMC532和NMC532/LFP的电荷传递阻抗Rct明显增大,但NMC532/LFP的Rct较小.NMC532和NMC532/LFP的I(003)/I(104)值都有所减小,但NMC532/LFP的I(003)/I(104)值比NMC532的大,即NMC532/LFP材料的阳离子混排现象有所改善.循环后NMC532、NMC532/LFP颗粒没有出现明显的表面开裂和链接断裂现象,但NMC532颗粒有部分发生粉化.高温储存后NMC532颗粒表面出现裂纹,且颗粒之间的链接断裂,NMC532/LFP颗粒表面出现轻微粉化.材料结构规整度下降,阳离子混排程度加剧,电荷传递阻抗增大是NMC532和NMC532/LFP容量衰减的主要原因.