The upconversion fluorescence of Er^3+ ions in LiKGdF5 : Er^3+, Dy^3+ single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 5...The upconversion fluorescence of Er^3+ ions in LiKGdF5 : Er^3+, Dy^3+ single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 543 nm) upconversion emissions, as well as weak red (651 nm), violet (406 nm), and blue (470 nm) upconversion emissions were obtained. With 514.5 nm laser excitation, violet (406 nm) and blue (470 nm) upconversion emissions were observed. Under 980 nm laser excitation, strong green (543 nm) and weak red (651) emissions were also obtained. The laser power dependence of the upconverted emissions was investigated to understand the upconversion mechanism. The excited state absorption (ESA) and the energy transfer (ET) processes were discussed as the possible mechanisms for all upconversion emissions.展开更多
Crystals of LiKGdF 5∶Er 3+, Tb 3+ grown by the hydrothermal synthesis technique with concentrations of 2% and 0.4% were analysed. By using site selective excitation measured at low temperature, luminescence and ex...Crystals of LiKGdF 5∶Er 3+, Tb 3+ grown by the hydrothermal synthesis technique with concentrations of 2% and 0.4% were analysed. By using site selective excitation measured at low temperature, luminescence and excitation spectra from Er 3+ and Tb 3+ ions embedded in LiKGdF 5 were clearly separated. The lifetimes of the emitting levels 4S 3/2 of Er 3+ and 5D 4 of Tb 3+ were also determined. Following the site selective spectroscopy study, the dominant energy transfer process from Tb 3+ to Er 3+ in the crystal was then investigated via transient experiments.展开更多
Na_(5)Y_(9)F_(32) single crystals doped with ~0.8-mol% Ho^(3+),~1-mol% Tm^(3+),and various Er^(3+) ion concentrations were prepared by a modified Bridgman method.The effects of Er^(3+)ion concentration on 2.0-μm emis...Na_(5)Y_(9)F_(32) single crystals doped with ~0.8-mol% Ho^(3+),~1-mol% Tm^(3+),and various Er^(3+) ion concentrations were prepared by a modified Bridgman method.The effects of Er^(3+)ion concentration on 2.0-μm emission excited by an800-nm laser diode were investigated with the help of their spectroscopic properties.The intensity of 2.0-μm emission reached to maximum when the Er^(3+) ion concentration was ~1 mol%.The energy transfer mechanisms between Er^(3+),Ho^(3+),and Tm^(3+) ions were identified from the change of the absorption spectra,the emission spectra,and the measured decay curves.The maximum 2.0-μm emission cross section of the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystal reached 5.26 × 10^(-21) cm^(2).The gain cross section spectra were calculated according to the absorption and emission cross section spectra.The cross section for ~2.0-μm emission became a positive gain once the inversion level of population was reached 30%.The energy transfer efficiency was further increased by 11.81% through the incorporation of Er^(3+) ion into Ho^(3+)/Tm^(3+) system estimated from the measured lifetimes of Ho^(3+)/Tm^(3+)-and Er^(3+)/Ho^(3+)/Tm^(3+)-doped Na_(5)Y_(9)F_(32)single crystals.The present results illustrated that the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystals can be used as promising candidate for 2.0-μm laser.展开更多
Er^3+/yb^3+ codoped zincate BaGd2ZnO5 phosphors were synthesized via a traditional solid state reaction. The crystal structure and phase purity were checked by means of X-ray dfluence of Eiffraction (XRD), and the...Er^3+/yb^3+ codoped zincate BaGd2ZnO5 phosphors were synthesized via a traditional solid state reaction. The crystal structure and phase purity were checked by means of X-ray dfluence of Eiffraction (XRD), and the results showed that pure phase BaGd2ZnO5 phosphors with various Er^3+/yb^3+ concentrations were obtained. The Er^3+ and Yb^3+ doping concentrations on the green and red upconversion emissions was studied. It was found that both green and red upconversion emissions under 980 nm excitation were two-photon processes independent from the rare earth doping concentrations. However, the upconversion luminescence intensities greatly depended on the rare earth doping concentration. Furthermore, the population processes of upconversion luminescence and the quenching mechanisms were analyzed. The temperature-dependent green upconvcrsion luminescence was studied, and the temperature quenching process of two green upconversion emissions was modeled. The thermal quenching processes of the green upconversion emissions could be well explained by the model we proposed.展开更多
基金Project supported by a grant from Department of Education of Zhejiang Province (20060496)
文摘The upconversion fluorescence of Er^3+ ions in LiKGdF5 : Er^3+, Dy^3+ single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 543 nm) upconversion emissions, as well as weak red (651 nm), violet (406 nm), and blue (470 nm) upconversion emissions were obtained. With 514.5 nm laser excitation, violet (406 nm) and blue (470 nm) upconversion emissions were observed. Under 980 nm laser excitation, strong green (543 nm) and weak red (651) emissions were also obtained. The laser power dependence of the upconverted emissions was investigated to understand the upconversion mechanism. The excited state absorption (ESA) and the energy transfer (ET) processes were discussed as the possible mechanisms for all upconversion emissions.
文摘Crystals of LiKGdF 5∶Er 3+, Tb 3+ grown by the hydrothermal synthesis technique with concentrations of 2% and 0.4% were analysed. By using site selective excitation measured at low temperature, luminescence and excitation spectra from Er 3+ and Tb 3+ ions embedded in LiKGdF 5 were clearly separated. The lifetimes of the emitting levels 4S 3/2 of Er 3+ and 5D 4 of Tb 3+ were also determined. Following the site selective spectroscopy study, the dominant energy transfer process from Tb 3+ to Er 3+ in the crystal was then investigated via transient experiments.
基金Project supported by the National Natural Science Foundation of China(Grant No.51772159)the Natural Science Foundation of Zhejiang Province+2 种基金China(Grant No.LZ17E020001)the Natural Science Foundation of Ningbo City(Grant No.202003N4099)K C Wong Magna Fund in Ningbo University。
文摘Na_(5)Y_(9)F_(32) single crystals doped with ~0.8-mol% Ho^(3+),~1-mol% Tm^(3+),and various Er^(3+) ion concentrations were prepared by a modified Bridgman method.The effects of Er^(3+)ion concentration on 2.0-μm emission excited by an800-nm laser diode were investigated with the help of their spectroscopic properties.The intensity of 2.0-μm emission reached to maximum when the Er^(3+) ion concentration was ~1 mol%.The energy transfer mechanisms between Er^(3+),Ho^(3+),and Tm^(3+) ions were identified from the change of the absorption spectra,the emission spectra,and the measured decay curves.The maximum 2.0-μm emission cross section of the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystal reached 5.26 × 10^(-21) cm^(2).The gain cross section spectra were calculated according to the absorption and emission cross section spectra.The cross section for ~2.0-μm emission became a positive gain once the inversion level of population was reached 30%.The energy transfer efficiency was further increased by 11.81% through the incorporation of Er^(3+) ion into Ho^(3+)/Tm^(3+) system estimated from the measured lifetimes of Ho^(3+)/Tm^(3+)-and Er^(3+)/Ho^(3+)/Tm^(3+)-doped Na_(5)Y_(9)F_(32)single crystals.The present results illustrated that the Er^(3+)/Ho^(3+)/Tm^(3+)tri-doped Na_(5)Y_(9)F_(32) single crystals can be used as promising candidate for 2.0-μm laser.
基金Project supported by the National Natural Science Foundation of China(11104023,11104024,11374044)Fundamental Research Funds for the Central Universities(3132014087,3132014327,3132013100)the State Key Developmment Program for Basic Research of China(973 program,2012CB626801)
文摘Er^3+/yb^3+ codoped zincate BaGd2ZnO5 phosphors were synthesized via a traditional solid state reaction. The crystal structure and phase purity were checked by means of X-ray dfluence of Eiffraction (XRD), and the results showed that pure phase BaGd2ZnO5 phosphors with various Er^3+/yb^3+ concentrations were obtained. The Er^3+ and Yb^3+ doping concentrations on the green and red upconversion emissions was studied. It was found that both green and red upconversion emissions under 980 nm excitation were two-photon processes independent from the rare earth doping concentrations. However, the upconversion luminescence intensities greatly depended on the rare earth doping concentration. Furthermore, the population processes of upconversion luminescence and the quenching mechanisms were analyzed. The temperature-dependent green upconvcrsion luminescence was studied, and the temperature quenching process of two green upconversion emissions was modeled. The thermal quenching processes of the green upconversion emissions could be well explained by the model we proposed.