采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X...采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。展开更多
用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)的表面进行处理,利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示,硅烷偶联剂经450℃加热分解后得...用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)的表面进行处理,利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示,硅烷偶联剂经450℃加热分解后得到的非晶态Si O2均匀包覆在材料表面,包覆不改变NCA的晶体结构,但明显改善了材料性能。在60℃环境中,0.2C、1C下包覆材料(简写为a-NCA)的放电比容量分别为176.4、158.9 m Ah·g-1,高于NCA的174.2、153.8 m Ah·g-1;50周循环后a-NCA的容量保持率为91.4%,远高于NCA的86.5%;同时,经包覆后材料的热稳定性大幅度提高。其原因是包覆层抑制了NCA在循环过程中与电解液发生副反应,有效降低了离子迁移的界面膜电阻,并抑制了晶体结构变化。展开更多
以硝酸盐为原料,采用共沉淀法制备出Li Ni0.8Co0.15Al0.05O2正极材料,研究了反应温度对材料的结构以及电化学性能的影响。结果表明:烧结温度对晶体结构的完整性以及晶粒尺寸有很大的影响,温度过低时,无法形成完整的层状结构,阳离子混排...以硝酸盐为原料,采用共沉淀法制备出Li Ni0.8Co0.15Al0.05O2正极材料,研究了反应温度对材料的结构以及电化学性能的影响。结果表明:烧结温度对晶体结构的完整性以及晶粒尺寸有很大的影响,温度过低时,无法形成完整的层状结构,阳离子混排严重;温度太高,晶体生长过快,晶粒尺寸粗大,晶格常数变小,不利于充放电循环时锂离子的脱嵌,造成容量的损失。在500℃预烧结、800℃烧结时获得的材料具有最好结构性能以及电化学性能,0.1 C首次放电比容量为186.8 m Ah/g,5 C下仍能保持107.4 m Ah/g,具有优异的循环性能以及倍率性能。展开更多
文摘采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。
文摘用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)的表面进行处理,利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示,硅烷偶联剂经450℃加热分解后得到的非晶态Si O2均匀包覆在材料表面,包覆不改变NCA的晶体结构,但明显改善了材料性能。在60℃环境中,0.2C、1C下包覆材料(简写为a-NCA)的放电比容量分别为176.4、158.9 m Ah·g-1,高于NCA的174.2、153.8 m Ah·g-1;50周循环后a-NCA的容量保持率为91.4%,远高于NCA的86.5%;同时,经包覆后材料的热稳定性大幅度提高。其原因是包覆层抑制了NCA在循环过程中与电解液发生副反应,有效降低了离子迁移的界面膜电阻,并抑制了晶体结构变化。
文摘采用共沉淀-高温固相法在氧气气氛下合成球形Li Ni0.8Co0.15Al0.05O2正极材料。通过XRD、SEM、恒电流充放电测试和交流阻抗测试等手段分析了氧化铝、氢氧化铝和异丙醇铝三种铝源对合成材料的结构、形貌以及电化学性能的影响。结果表明,以三种不同铝源所合成的正极材料均具有良好的层状结构。用异丙醇铝合成的正极材料具有最小的一次颗粒,球型度较好,具有优异的电化学性能,在0.2 C下首次放电比容量为189.22 m Ah/g,50次循环后容量保持率为84.2%。然后,通过EIS测试分析了不同铝源对合成材料性能影响的原因。
文摘以硝酸盐为原料,采用共沉淀法制备出Li Ni0.8Co0.15Al0.05O2正极材料,研究了反应温度对材料的结构以及电化学性能的影响。结果表明:烧结温度对晶体结构的完整性以及晶粒尺寸有很大的影响,温度过低时,无法形成完整的层状结构,阳离子混排严重;温度太高,晶体生长过快,晶粒尺寸粗大,晶格常数变小,不利于充放电循环时锂离子的脱嵌,造成容量的损失。在500℃预烧结、800℃烧结时获得的材料具有最好结构性能以及电化学性能,0.1 C首次放电比容量为186.8 m Ah/g,5 C下仍能保持107.4 m Ah/g,具有优异的循环性能以及倍率性能。