采用共沉淀法制备的球形Ni0.8Co0.15(OH)1.9作为锂离子电池正极材料前驱体,讨论了烧结制备LiNi0.8Co0.15Al0.05O2过程中W掺杂对正极材料结构和电化学性能的影响。结果表明:在烧结过程中引入Al并同时进行W掺杂,可得到球形形貌完整且表面...采用共沉淀法制备的球形Ni0.8Co0.15(OH)1.9作为锂离子电池正极材料前驱体,讨论了烧结制备LiNi0.8Co0.15Al0.05O2过程中W掺杂对正极材料结构和电化学性能的影响。结果表明:在烧结过程中引入Al并同时进行W掺杂,可得到球形形貌完整且表面具有一定空隙的正极材料;在750℃条件下烧结得到的LiNi0.8Co0.15Al0.049W0.001O2正极材料具有极佳的电化学性能。W掺杂正极材料的放电比容量(2C)达到177.9 m Ah/g,循环300周后,容量保持率达到84.32%。在20C大倍率下,W掺杂正极材料具有153.9 m Ah/g的放电比容量,远高于未掺杂样品(95 mAh/g)。展开更多
LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas wel...LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.展开更多
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X...采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。展开更多
用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)的表面进行处理,利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示,硅烷偶联剂经450℃加热分解后得...用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)的表面进行处理,利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示,硅烷偶联剂经450℃加热分解后得到的非晶态Si O2均匀包覆在材料表面,包覆不改变NCA的晶体结构,但明显改善了材料性能。在60℃环境中,0.2C、1C下包覆材料(简写为a-NCA)的放电比容量分别为176.4、158.9 m Ah·g-1,高于NCA的174.2、153.8 m Ah·g-1;50周循环后a-NCA的容量保持率为91.4%,远高于NCA的86.5%;同时,经包覆后材料的热稳定性大幅度提高。其原因是包覆层抑制了NCA在循环过程中与电解液发生副反应,有效降低了离子迁移的界面膜电阻,并抑制了晶体结构变化。展开更多
文摘采用共沉淀法制备的球形Ni0.8Co0.15(OH)1.9作为锂离子电池正极材料前驱体,讨论了烧结制备LiNi0.8Co0.15Al0.05O2过程中W掺杂对正极材料结构和电化学性能的影响。结果表明:在烧结过程中引入Al并同时进行W掺杂,可得到球形形貌完整且表面具有一定空隙的正极材料;在750℃条件下烧结得到的LiNi0.8Co0.15Al0.049W0.001O2正极材料具有极佳的电化学性能。W掺杂正极材料的放电比容量(2C)达到177.9 m Ah/g,循环300周后,容量保持率达到84.32%。在20C大倍率下,W掺杂正极材料具有153.9 m Ah/g的放电比容量,远高于未掺杂样品(95 mAh/g)。
基金partially supported by the National Key Research and Development Program of China (2016YFB0100203)the National Natural Science Foundation of China (21673116,21633003)+1 种基金the Natural Science Foundation of Jiangsu Province of China (BK20160068)PAPD of Jiangsu Higher Education Institutions
文摘LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.
文摘采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。
文摘用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)的表面进行处理,利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示,硅烷偶联剂经450℃加热分解后得到的非晶态Si O2均匀包覆在材料表面,包覆不改变NCA的晶体结构,但明显改善了材料性能。在60℃环境中,0.2C、1C下包覆材料(简写为a-NCA)的放电比容量分别为176.4、158.9 m Ah·g-1,高于NCA的174.2、153.8 m Ah·g-1;50周循环后a-NCA的容量保持率为91.4%,远高于NCA的86.5%;同时,经包覆后材料的热稳定性大幅度提高。其原因是包覆层抑制了NCA在循环过程中与电解液发生副反应,有效降低了离子迁移的界面膜电阻,并抑制了晶体结构变化。