The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The...The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The optimum technological condition was obtained through orthogonal experiments by L_9(3~4) and DTA analysis. The result indicates that the factors of effecting the electrochemical properties of synthesized LiNi_(0.8)Co_(0.2)O_2 are molar ratio of Li/Ni/Co, oxygen pressure, homothermal time, the final sintering temperature in turn according to its importance. The oxygen pressure is reviewed independently and the technological condition is further optimized. With the same method, rare earth element Ce was studied as substitute element of Co and the cathode material of LiNi_(0.95)Ce_(0.05)O_2 with excellent electrochemical properties was prepared. The electrochemical testing results of LiNi_(0.8)Co_(0.2)O_2 and LiNi_(0.95)Ce_(0.05)O_2 experimental batteries show that discharge capacities of them reach 165 and 148 mAh·g^(-1) respectively and the persistence is more than 9 h at 3.7 V.展开更多
LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)secondary particles with high tap density have a great potential for high volumetric energy density lithium(Li)-ion power bat-tery.However,the ionic conductivity mechanism of NCA ...LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)secondary particles with high tap density have a great potential for high volumetric energy density lithium(Li)-ion power bat-tery.However,the ionic conductivity mechanism of NCA with compact structure is still a suspense,especially the function of grain boundaries.Herein,we sys-tematically investigate the Li-ion transport behavior in both the primitive NCA(PNCA)secondary sphere densely grown by single-crystal primary grains and ball-milled NCA(MNCA)nanosized particle to reveal the role of grain bound-aries for Li-ion transport.The PNCA and MNCA have comparable Li-ion dif-fusion coefficients and rate performance.Moreover,the graphene nanosheet conductive additive only mildly affects the Li-ion diffusion in PNCA cathode,while which severely blocks the Li-ion transport in MNCA cathode.Through high-resolution transmission electron microscopy and electron energy loss spec-troscopy,we clearly observe Li-ion depletion at lower state of charge(SOC)and Li-ion aggregation at high SOC along the grain boundaries of PNCA secondary particles during high-rate lithiation process.The grain boundaries can construct an interconnected Li-ion transport network for highly efficient Li-ion transport,which contributes to excellent high-rate performance of compact PNCA sec-ondary particles.These findings present new strategy and deep insight in design-ing compact materials with excellent high-rate performance.展开更多
LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA) is a promising cathode for sulfide-based solid-state lithium batteries(ASSLBs)profiting from its high specific capacity and voltage plateau, which yielding high energy density. H...LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA) is a promising cathode for sulfide-based solid-state lithium batteries(ASSLBs)profiting from its high specific capacity and voltage plateau, which yielding high energy density. However, the inferior interfacial stability between the bare NCA and sulfides limits its electrochemical performance. Hereien, the dual-electrolyte layer is proposed to mitigate this effect and enhance the battery performances of NCA-based ASSLIBs. The Li_(3)InCl_6 wih high conductivity and excellent electrochemcial stability act both as an ion additives to promote Li-ion diffusion across the interface in the cathode and as a buffer layer between the cathode layer and the solid electrolyte layer to avoid side reactions and improve the interface stability. The corresponding battery exhibits high discharge capacities and superior cyclabilities at both room and elevated temperatures. It exhibits discharge performance of 237.04 and216.07 m Ah/g at 0.1 and 0.5 C, respectively, when cycled at 60 ℃, and sustains 95.9% of the capacity after100 cycles at 0.5 C. The work demonstrates a simple strategy to ensure the superior performances of NCA in sulfide-based ASSLBs.展开更多
文摘The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The optimum technological condition was obtained through orthogonal experiments by L_9(3~4) and DTA analysis. The result indicates that the factors of effecting the electrochemical properties of synthesized LiNi_(0.8)Co_(0.2)O_2 are molar ratio of Li/Ni/Co, oxygen pressure, homothermal time, the final sintering temperature in turn according to its importance. The oxygen pressure is reviewed independently and the technological condition is further optimized. With the same method, rare earth element Ce was studied as substitute element of Co and the cathode material of LiNi_(0.95)Ce_(0.05)O_2 with excellent electrochemical properties was prepared. The electrochemical testing results of LiNi_(0.8)Co_(0.2)O_2 and LiNi_(0.95)Ce_(0.05)O_2 experimental batteries show that discharge capacities of them reach 165 and 148 mAh·g^(-1) respectively and the persistence is more than 9 h at 3.7 V.
基金National Natural Science Founda-tion of China,Grant/Award Number:U2001220Local Innovative Research Teams Project of Guangdong Pearl River Talents Program,Grant/Award Number:2017BT01N111+2 种基金Shenzhen Technical Plan Project,Grant/Award Numbers:JCYJ20180508152135822,JCYJ20180508152210821,JCYJ20170412170706047Shenzhen graphene manufacturing innova-tion center,Grant/Award Number:201901161513Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center,Grant/Award Number:XMHT20200203006。
文摘LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)secondary particles with high tap density have a great potential for high volumetric energy density lithium(Li)-ion power bat-tery.However,the ionic conductivity mechanism of NCA with compact structure is still a suspense,especially the function of grain boundaries.Herein,we sys-tematically investigate the Li-ion transport behavior in both the primitive NCA(PNCA)secondary sphere densely grown by single-crystal primary grains and ball-milled NCA(MNCA)nanosized particle to reveal the role of grain bound-aries for Li-ion transport.The PNCA and MNCA have comparable Li-ion dif-fusion coefficients and rate performance.Moreover,the graphene nanosheet conductive additive only mildly affects the Li-ion diffusion in PNCA cathode,while which severely blocks the Li-ion transport in MNCA cathode.Through high-resolution transmission electron microscopy and electron energy loss spec-troscopy,we clearly observe Li-ion depletion at lower state of charge(SOC)and Li-ion aggregation at high SOC along the grain boundaries of PNCA secondary particles during high-rate lithiation process.The grain boundaries can construct an interconnected Li-ion transport network for highly efficient Li-ion transport,which contributes to excellent high-rate performance of compact PNCA sec-ondary particles.These findings present new strategy and deep insight in design-ing compact materials with excellent high-rate performance.
基金supported by the National Key Research and Development Program (No.2021YFB2500200)the National Natural Science Foundation of China (No.52177214)supported by China Fujian Energy Devices Science and Technology Innovation Laboratory Open Fund (No.21C-OP202211)。
文摘LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA) is a promising cathode for sulfide-based solid-state lithium batteries(ASSLBs)profiting from its high specific capacity and voltage plateau, which yielding high energy density. However, the inferior interfacial stability between the bare NCA and sulfides limits its electrochemical performance. Hereien, the dual-electrolyte layer is proposed to mitigate this effect and enhance the battery performances of NCA-based ASSLIBs. The Li_(3)InCl_6 wih high conductivity and excellent electrochemcial stability act both as an ion additives to promote Li-ion diffusion across the interface in the cathode and as a buffer layer between the cathode layer and the solid electrolyte layer to avoid side reactions and improve the interface stability. The corresponding battery exhibits high discharge capacities and superior cyclabilities at both room and elevated temperatures. It exhibits discharge performance of 237.04 and216.07 m Ah/g at 0.1 and 0.5 C, respectively, when cycled at 60 ℃, and sustains 95.9% of the capacity after100 cycles at 0.5 C. The work demonstrates a simple strategy to ensure the superior performances of NCA in sulfide-based ASSLBs.