期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Degradation mechanism of high-voltage single-crystal LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode material
1
作者 柳娜 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期618-622,共5页
Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,deve... Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,developing high-voltage LiNi_(x)Co_(y)Mn_(z)O_(2)(x+y+z=1,NCM)to achieve high energy density is particularly important.However,under high voltage cycling,NCM often exhibits rapid capacity degradation,which can be attributed to oxygen release,structural phase transition and particle cracking.In this work,the representative single-crystal LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)was studied under various high charge cut-off voltages.Analysis by x-ray diffraction(XRD),transmission electron microscope(TEM)and electron back scatter diffraction(EBSD)measurements indicated that the rock-salt phase is formed on the surface of the particles after high voltage cycling,which is responsible for the increase of impedance and the rapid decay of capacity.Therefore,inhibiting the formation of rock-salt phase is believed an effective strategy to address the failure of NCM under high voltages.These findings provide effective guidance for the development of high-voltage NCM. 展开更多
关键词 high voltage Li-ion battery phase transition lini_(x)co_(y)Mn_(z)O_(2)
下载PDF
LiNi_(x)Co_(y)Al_(z)O_(2)锂离子电池SOC估算及衰减特性 被引量:1
2
作者 闵凡奇 吕桃林 +1 位作者 解晶莹 高云智 《电池》 CAS 北大核心 2021年第3期225-228,共4页
以LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)体系锂离子电池为研究对象,建立具有多工况下普适性的开路电压(OCV)-荷电状态(SOC)曲线,估算电池在不同工况下的SOC。研究电池在变工况(1.00 C倍率循环、1.50 C转1.00 C倍率循环、2.00 C转1.00 C倍率... 以LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)体系锂离子电池为研究对象,建立具有多工况下普适性的开路电压(OCV)-荷电状态(SOC)曲线,估算电池在不同工况下的SOC。研究电池在变工况(1.00 C倍率循环、1.50 C转1.00 C倍率循环、2.00 C转1.00 C倍率循环等)下,正极活性材料容量(Qp)、负极活性材料容量(Qn)及活性锂容量(QLi)的变化趋势。在变工况条件下,相同低倍率工况(1.00 C倍率)的Qn和QLi衰减趋势相对一致。 展开更多
关键词 lini_(x)co_(y)Al_(z)O_(2)(NCA) 锂离子电池 荷电状态(SOC) 衰减特性 活性锂
下载PDF
LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)正极材料的热稳定性
3
作者 陈嘉琦 王坤 +1 位作者 夏阳 黄辉 《电池》 CAS 北大核心 2022年第2期162-166,共5页
为推进三元正极材料的实际应用,通过对电池进行热冲击实验,研究环境温度对LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(x=0.3,0.5,0.6和0.8,NCM)电化学性能和热稳定性的影响。从放电比容量、内部结构、充放电电压、过渡金属元素的溶解、热稳定性和... 为推进三元正极材料的实际应用,通过对电池进行热冲击实验,研究环境温度对LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(x=0.3,0.5,0.6和0.8,NCM)电化学性能和热稳定性的影响。从放电比容量、内部结构、充放电电压、过渡金属元素的溶解、热稳定性和阻抗等方面分析NCM材料的性能。NCM材料的放电比容量随着Ni含量的增加而增加,但容量保持率较低,且在热冲击过程中发生不可逆比容量损失。高Ni NCM材料(x≥0.6)在热冲击过程中的容量快速衰减,高温循环下材料结构被破坏、Li/Ni混排增加和过渡金属元素溶出是重要的原因。 展开更多
关键词 锂离子电池 lini_(x)co_(y)Mn_(1-x-y)O_(2)(ncm) 热冲击 热稳定性 比容量
下载PDF
提高LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)振实密度的研究进展
4
作者 尹永才 梁剧 《河南科技》 2021年第9期156-158,共3页
LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)比较低的振实密度使得LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)电池的体积比能量较低,限制了其实际应用。综述了国内外关于提高LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)振实密度的研究进展,给出结论,合成球形颗粒是提高材料... LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)比较低的振实密度使得LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)电池的体积比能量较低,限制了其实际应用。综述了国内外关于提高LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)振实密度的研究进展,给出结论,合成球形颗粒是提高材料振实密度的有效途径,提高振实密度并兼顾良好的电化学性能是提高体积比能量的关键。 展开更多
关键词 lini_(x)co_(y)Mn_(1-x-y)O_(2) 正极材料 振实密度
下载PDF
Recent progress of in-situ characterization of LiNi_(1−x−y)Co_(x)Mn_(y)O_(2) cathodes for lithium metal batteries: A mini review
5
作者 Huanzhu Lv Xiaoqi Zhu +2 位作者 Jun Mei Yuanhua Xia Bin Wang 《Nano Research》 SCIE EI CSCD 2024年第3期1384-1401,共18页
In the context of the gradual popularity of electric vehicles(EVs),the development of lithium battery systems with high energy density and power density is regarded as the foremost way to improve the range of EVs.LiNi... In the context of the gradual popularity of electric vehicles(EVs),the development of lithium battery systems with high energy density and power density is regarded as the foremost way to improve the range of EVs.LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathodes have been the focus of researchers due to their high energy density,excellent power performance,and low-temperature resistance.However,the elaboration of the decay mechanism of NCM cathode based on lithium metal batteries(LMBs)is still being restricted to the primary level.In the past decades,the development and application of advanced in-situ characterization tools have facilitated researchers'understanding of the internal operation mechanism of batteries during charging and discharging.In this minireview,the latest progress of in-situ observation of the NCM cathode by X-ray diffraction(XRD),fourier transform infrared(FT-IR)spectroscopy,Raman spectroscopy,atomic force microscopy(AFM),transmission electron microscope(TEM),optical microscope,and other characterization tools is summarized.The mechanisms of structural degradation,cathode-electrolyte interfaces(CEIs)composition,and dynamic changes of NCM,electrolyte breakdown,and gas production are elaborated.Finally,based on the existing research progress,the opportunities and challenges for future in-situ characterization technology in the study of the mechanism of LMBs are discussed in depth.Therefore,the purpose of this minireview is to summarize recent work that focuses on the outstanding application of in-situ characterization techniques in the mechanistic study of LMBs,and pointing the way to the future development of high energy density and power density LMBs systems. 展开更多
关键词 lithium metal batteries(LMBs) In-situ characterization lini_(1-x-y)co_(x)Mn_(y)O_(2)(ncm)
原文传递
LiTi_(2)(PO_(4))_(3)修饰高镍单晶三元正极材料增强结构稳定性 被引量:1
6
作者 李西安 冯彦彦 《电源技术》 CAS 北大核心 2023年第5期618-622,共5页
单晶LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(SCNCM,1-x-y>0.9)正极材料由于其特殊的晶体结构,与多晶NCM材料相比,具有更优越的循环寿命。然而,SCNCM在长循环过程中由于严重的副反应和不可逆相变,导致严重的容量退化。具有较高扩散系数的LiTi... 单晶LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(SCNCM,1-x-y>0.9)正极材料由于其特殊的晶体结构,与多晶NCM材料相比,具有更优越的循环寿命。然而,SCNCM在长循环过程中由于严重的副反应和不可逆相变,导致严重的容量退化。具有较高扩散系数的LiTi_(2)(PO_(4))_(3)(LTP)可以增强Li^(+)在电极和电解质之间的传递,并防止与空气和电解质的副反应。为了优化SCNCM的电化学性能,采用液相混合和固相烧结相结合的方法对其进行表面包覆,提高单晶SCNCM循环性能。X射线衍射(XRD)和高分辨透射电子显微镜(HRTEM)结果证实,SCNCM表面包覆一层30~50 nm的LTP涂层,改性后的样品在长循环后仍然可以保持良好的层状结构。具体地说,包覆0.8%(质量分数)LTP的SCNCM正极在0.5 C循环100圈后,放电比容量为151.2 mAh/g。 展开更多
关键词 lini_(1-x-y)co_(x)Mn_(y)O_(2)氧化物 单晶ncm LiTi_(2)(PO_(4))_(3)包覆 层状结构
下载PDF
Reducing structural degradation of high-voltage single-crystal Ni-rich cathode through in situ doping strategy
7
作者 Xin-Ming Fan Zhi Zhang +6 位作者 Gao-Qiang Mao Ying-Jie Tong Ke-Bo Lin Hui Tong Wei-Feng Wei Qing-Hua Tian Xue-Yi Guo 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期2993-3003,共11页
Polycrystalline Ni-rich layered oxide (Li Ni_(x)Co_(y)Mn_zO_(2)(NCM),x>0.8) cathode material with high specific capacity and low cost is considered as one of the most promising candidate materials for lithium-ion b... Polycrystalline Ni-rich layered oxide (Li Ni_(x)Co_(y)Mn_zO_(2)(NCM),x>0.8) cathode material with high specific capacity and low cost is considered as one of the most promising candidate materials for lithium-ion batteries (LIBs).However,it suffers from severe structural and capacity degradation during practical cycling,especially under harsh operation condition(ultrahigh cutoff voltage and elevated temperature,etc.).One promising approach to mitigate these issues is to develop a single-crystal Ni-rich NCM cathode,which could enhance structural integrity and improve capacity retention,due to its robust and stable micro-sized primary particles.However,the improved cyclic stability comes at the expense of reversible capacity and rate capability,owing to the relatively low Li^(+) diffusion efficiency for its micron-sized primary particles.Moreover,the structural degradation and exacerbation of interfacial reactions for the Ni-rich NCM cathode under highvoltage (≥4.5 V) would quickly trigger the poor electrochemical performance,limiting its practical applications.Herein,Li Ni_(0.827)Co_(0.11)Zr_(0.003)Mn_(0.06)O_(2)(Zr@SC-N_(83)) cathode material was successfully synthesized via the in situ doping strategy.It could not only effectively maintain the reversibility of phase transition between H2 and H3 after long-term cycling at high voltage (4.6 V),but also enhance lithium-ion diffusion,thus improving the cycling performance and good rate performance for the Zr@SC-N_(83)cathode.As a result,0.3 wt%Zrdoping cathode delivers an initial discharging capacity of 200.1 m Ah·g^(-1)at 1.0C and at the high cutoff voltage of 4.6 V,exhibiting the satisfactory capacity retention of 85.5%after 100cycles.It provides an effective route toward low-cost and higher energy density for lithium-ion batteries with Ni-rich cathode. 展开更多
关键词 Single-crystal Ni-rich lini_(x)co_(y)Mn_zO_(2)(ncm) In situ doping strategy High voltage Structural integrity Cycling stability
原文传递
In-situ construction of a thermodynamically stabilized interface on the surface of single crystalline Ni-rich cathode materials via a onestep molten-salt route
8
作者 Huiya Yang Xiangbang Kong +4 位作者 Jiyang Li Pengpeng Dai Jing Zeng Yang Yang Jinbao Zhao 《Nano Research》 SCIE EI CSCD 2023年第5期6771-6779,共9页
Nickel rich LiNi_(x)Co_(y)Mn_(1−x−y)O_(2)cathode materials have been studied extensively to increase the energy density of lithium-ion batteries(LIBs)due to their advantages of high capacity and low cost.However,the a... Nickel rich LiNi_(x)Co_(y)Mn_(1−x−y)O_(2)cathode materials have been studied extensively to increase the energy density of lithium-ion batteries(LIBs)due to their advantages of high capacity and low cost.However,the anisotropic crystal expansion and contraction inside the secondary particles would cause detrimental micro-cracks and severe parasitic reactions at the electrode/electrolyte interface during cycling,which severely decreases the stability of crystalline structure and cathodeelectrolyte interphase and ultimately affects the calendar life of batteries.Herein,a thermodynamically stabilized interface is constructed on the surface of single-crystalline Ni-rich cathode materials(SC811@RS)via a facile molten-salt route to suppress the generation of microcracks and interfacial parasitic side reactions simultaneously.Density functional theory calculations show that the formation energy of interface layer(−1.958 eV)is more negative than that of bulk layered structure(−1.421 eV).Such a thermodynamically stable protective layer can not only prevent the direct contact between highly reactive LiNi_(x)Co_(y)Mn_(1−x−y)O_(2)and electrolyte,but also mitigate deformation of structure caused by stress thus strengthening the mechanical properties.Raman spectra further confirm the excellent structural reversibility and reaction homogeneity of SC811@RS at particle,electrode,time scales.Consequently,SC811@RS cathode material delivers significantly improved cycling stability(high capacity retention of 92%after 200 cycles at 0.5 C)compared with polycrystalline LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(82%). 展开更多
关键词 lini_(x)co_(y)Mn_(1−xy)O_(2) single crystalline polycrystalline cathode lithium-ion battery
原文传递
一代材料,一代电池:正极材料研究推动锂离子动力电池的升级换代 被引量:3
9
作者 贲留斌 武怿达 +1 位作者 朱永明 黄学杰 《物理》 CAS 北大核心 2022年第6期373-383,共11页
一代材料,一代电池。锂离子电池正极材料的研究不断推动着动力电池的升级换代。第一代动力电池的正极材料为锰酸锂LiMn_(2)O_(4),其低温性能好、成本低和安全性高,但电池能量密度不够高。第二代动力电池正极材料为磷酸铁锂LiFePO_(4)和... 一代材料,一代电池。锂离子电池正极材料的研究不断推动着动力电池的升级换代。第一代动力电池的正极材料为锰酸锂LiMn_(2)O_(4),其低温性能好、成本低和安全性高,但电池能量密度不够高。第二代动力电池正极材料为磷酸铁锂LiFePO_(4)和三元正极材料镍钴锰NCM/镍钴铝NCA。磷酸铁锂正极材料的优势是长寿命、低成本、高安全性。三元锂正极材料的特点是大容量、高能量密度、快充效率高。第三代动力电池的正极材料是高电压镍锰酸锂LiNi_(0.5)Mn_(1.5)O_(4)和镍酸锂LiNiO_(2),主要解决第二代面临的低成本和长续航不能兼顾的问题以及更长里程问题。文章首先回顾第一、二代的锰酸锂、磷酸铁锂和三元正极材料的研究历程、优缺点及发展近况,之后介绍和展望下一代高电压镍锰酸锂和镍酸锂正极材料。 展开更多
关键词 正极材料 锰酸锂 磷酸铁锂 三元正极材料 高电压镍锰酸锂 镍酸锂
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部