The Ce_xTh_(1-x)O_2 solid solutions were prepared by citrate sol-gel method,and their structure and reduction properties were studied. XRD shows that solid solution with cubicphase formed in all the solid solutions (x...The Ce_xTh_(1-x)O_2 solid solutions were prepared by citrate sol-gel method,and their structure and reduction properties were studied. XRD shows that solid solution with cubicphase formed in all the solid solutions (x = 0.2, 0.5, 0.8) Ce_xTh_(1-x)O_2. Raman spectrum showsthat Ce-Th complex oxides can promote the formation of oxygen vacancies. Two reduction peaks appearin the TPR profiles of Ce_xTh_(1-x)O_2 solid solution. The a peak is attributed to the reduction ofCe^(4+) on the surface, and the β peak is attributed to the reduction of bulk CeO_2. Theincorporation of Th atom into CeO_2 improves the reduction of CeO_2. Ce_xTh_(1-x)O_2 mixed oxidesare promising materials for oxygen vacancies produced, as well as catalysts for many reactionsinvolved oxygen, such as the catalysts for three-way reactions for reducing the releasing pollutantsor combustion of VOCs.展开更多
The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x v...The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) were synthesized bystandard solid state reaction technique. The high and low temperature X-ray diffraction analysisindicate that the substitution of the Hf^(4+) for Zr^(4+) only leads to reducing the latticeconstants, and the changes of negative thermal expansion coefficients are not obvious. The linearexpansion coefficients of Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) are about -6 X 10^(-6) K^(-1) in the temperature range of 298 to 973 K, while that of Zr_(0.5)Hf_(0.5)W_2O_8 is -9.6X 10^(-6) K_(-1) from 83 to 298 K. The phase transition temperatures from alpha-ZrW_2O_8 tobeta-ZrW_2O_8 structure were also determined by X-ray diffraction method. Thermogravimetric analysis(TGA) exhibits that Zr_(1-x)Hf_xW_2O_8 is not hygroscopic in air.展开更多
文摘The Ce_xTh_(1-x)O_2 solid solutions were prepared by citrate sol-gel method,and their structure and reduction properties were studied. XRD shows that solid solution with cubicphase formed in all the solid solutions (x = 0.2, 0.5, 0.8) Ce_xTh_(1-x)O_2. Raman spectrum showsthat Ce-Th complex oxides can promote the formation of oxygen vacancies. Two reduction peaks appearin the TPR profiles of Ce_xTh_(1-x)O_2 solid solution. The a peak is attributed to the reduction ofCe^(4+) on the surface, and the β peak is attributed to the reduction of bulk CeO_2. Theincorporation of Th atom into CeO_2 improves the reduction of CeO_2. Ce_xTh_(1-x)O_2 mixed oxidesare promising materials for oxygen vacancies produced, as well as catalysts for many reactionsinvolved oxygen, such as the catalysts for three-way reactions for reducing the releasing pollutantsor combustion of VOCs.
基金This project is financially supported by the National Natural Science Foundation of China (No. 50002001) the Natural Science Foundation of Yunnan Province (No. 2000E0006Q)
文摘The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) were synthesized bystandard solid state reaction technique. The high and low temperature X-ray diffraction analysisindicate that the substitution of the Hf^(4+) for Zr^(4+) only leads to reducing the latticeconstants, and the changes of negative thermal expansion coefficients are not obvious. The linearexpansion coefficients of Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) are about -6 X 10^(-6) K^(-1) in the temperature range of 298 to 973 K, while that of Zr_(0.5)Hf_(0.5)W_2O_8 is -9.6X 10^(-6) K_(-1) from 83 to 298 K. The phase transition temperatures from alpha-ZrW_2O_8 tobeta-ZrW_2O_8 structure were also determined by X-ray diffraction method. Thermogravimetric analysis(TGA) exhibits that Zr_(1-x)Hf_xW_2O_8 is not hygroscopic in air.