Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ...Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.展开更多
Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle ...Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM.展开更多
The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)mod...The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)modification improves the structure stability,intercalation/deintercalation reversibility of lithium-ions,and electrochemical reaction activity of Li_(2)Zn Ti_(3)O_(8),and promotes the transfer of lithium ions.Benefited from the unique component,Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) shows a good rate performance with charge capacities of 203.9,194.8,187.4,180.6,and177.1 mAh·g^(-1)at 0.5,1,2,3,and 5 C,respectively.Nevertheless,pure LZTO only delivers charge capacities of 134.5,109.7,89.4,79.9,and 72.9 mAh·g^(-1)at the corresponding rates.Even at large charge–discharge rate,the Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g^(-1)at 5 C after 150 cycles.The introduction of LiAlO_(2)on the surface of Li_(2)Zn Ti_(3)O_(8)enhances electronic conductivity of the composite,resulting in the good electrochemical performance of Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)composite.Li_(2)Zn Ti_(3)O_(8)@LiAlO_(2)(8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries.展开更多
Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) composite was easily synthesized via one-step succinct-operated hydrothermal process.The interconnected Co_(3)V_(2)O_(8)/Co_(3)O_(4) nanowires network can in-situ grow and...Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) composite was easily synthesized via one-step succinct-operated hydrothermal process.The interconnected Co_(3)V_(2)O_(8)/Co_(3)O_(4) nanowires network can in-situ grow and anchor on the surface of Ti_(3)C_(2)T_(x) via the strong Co-F bonds and contribute tremendously to depress Ti_(3)C_(2)T_(x) self-restacking.Profiting from the synergistically interplayed effect among the multiple interfaces and high conductivity of Ti_(3)C_(2)T_(x) as well as outstanding stability of the as-designed nanostructure,the optimum Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x)electrode reaches a commendable specific capacitance(up to 3800 mF·cm^(−2)),great rate capability(80%capacitance retention after 20-times current increasing),and preeminent cycling stability(95.4%/85.5%retention at 7000th/20,000th cycle).Moreover,the all-solid-state asymmetric supercapacitor based on Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) and active carbon can deliver a high energy density of 84.0μWh·cm^(−2) at the power energy of 3.2 mW·cm^(−2),and excellent cycling durability with 87.0%of initial capacitance retention upon 20,000 loops.This work provides a practicable pathway to tailor MXene-based composites for high-performance supercapacitor.展开更多
The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_...The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_(2)ZnTi_(3)O_(8)(LZTO),characterized by its stable spinel structure,exhibits high Li+conductivity and holds great potential as an effective adsorbent for LiPSs.This study proposes a collaborative design concept of LZTO host–separator modifier,which offers a complementary and matching approach in the cathode side,effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs.Density functional theory(DFT)calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs.More importantly,the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles.Furthermore,the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves.Consequently,the LZTO host–separator modifier-based cell displays satisfactory rate capability(1449 and 1166 mAh·g^(−1)at 0.1 and 0.5 C)and an impressively capacity(606 mAh·g^(−1)after 500 cycles at 1 C).The coordinated strategy of host–separator modifier is supposed to have wide applications in LSBs.展开更多
Hollow micro-/nanostructures have achieved great success in the field of renewable battery materials by reducing the volume change and promoting the ion transport.Double-shelled Co_(3)V_(2)O__(8)hollow nanospheres(CVO...Hollow micro-/nanostructures have achieved great success in the field of renewable battery materials by reducing the volume change and promoting the ion transport.Double-shelled Co_(3)V_(2)O__(8)hollow nanospheres(CVODSS)were synthesized using a facile solvothermal method followed by a thermal treatment in the absence of any surfactant.Meanwhile,two other architectures of hollow nanospheres and nanoparticles were obtained by changing the annealing temperature.Benefiting from the desired hollow structure,the CVO-DSS electrode exhibits excellent lithium storage properties as an anode.It exhibits a reversible discharge capacity of 1210 m Ah·g^(-1)at200 m A·g^(-1)after 100 cycles and a satisfactorily high rate capacity of 628 m Ah·g^(-1)after 800 cycles at 5000 m A·g^(-1).These hollow nanostructures can efficiently enhance the contact area of the electrolyte/electrode interface,promote the diffusion of lithium ions and electrons and slow down the capacity loss during long cycles.展开更多
锂硫电池中多硫化锂的“穿梭效应”、单质硫导电性差等问题导致其寿命短、倍率性能差,严重限制了其实际应用.基于此,本文采用溶胶凝胶法合成了尖晶石型Li_(2)MnTi_(3)O_(8)(LMTO)纳米颗粒,将其同时作为硫宿主材料和功能隔膜涂层,极大地...锂硫电池中多硫化锂的“穿梭效应”、单质硫导电性差等问题导致其寿命短、倍率性能差,严重限制了其实际应用.基于此,本文采用溶胶凝胶法合成了尖晶石型Li_(2)MnTi_(3)O_(8)(LMTO)纳米颗粒,将其同时作为硫宿主材料和功能隔膜涂层,极大地提升了锂硫电池的循环稳定性和Li+的扩散速率.均匀分散的LMTO纳米颗粒不仅能提供丰富的电化学活性位点,同时可减少活性硫的损失.此外,LMTO功能化隔膜具有吸附多硫化锂的能力,有效抑制了多硫化锂的穿梭.实验结果表明,以LMTO为硫宿主材料和功能隔膜涂层组装的锂硫电池在充放电过程中展现了较快的锂离子扩散速率(DLi+分别为2.25×10^(−5),1.31×10^(−5)和1.61×10^(−4)cm^(2)s^(−1)),表明其快速的反应动力学.在0.5 C的电流密度下,电池首次放电比容量可达到1059 mAh g^(−1),经过300次循环,容量稳定在797 mAh g^(−1).双功能改性后的电池性能均优于单功能改性的电池.该材料的双功能应用策略为开发高容量、长寿命的锂硫电池提供了理论支持.展开更多
基金supported by National Natural Science Foundation of China(52208272,41706080 and 51702328)the Basic Scientific Fund for National Public Research Institutes of China(2020S02 and 2019Y03)+3 种基金the Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-DQC025)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210201)the Strategic Leading Science&Technology Program of the Chinese Academy of Sciences(XDA13040403)the Key Research and Development Program of Shandong Province(Major Scientific and Technological Innovation Project)(2019JZZY020711).
文摘Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.
基金Project(51772333) supported by the National Natural Science Foundation of China。
文摘Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM.
基金supported by the National Natural Science Foundation of China (No.U1960107)the“333”Talent Project of Hebei Province,China (No.A202005018)+1 种基金the Fundamental Research Funds for the Central Universities(No.N2123001)the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,China (No.22567627H)。
文摘The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)modification improves the structure stability,intercalation/deintercalation reversibility of lithium-ions,and electrochemical reaction activity of Li_(2)Zn Ti_(3)O_(8),and promotes the transfer of lithium ions.Benefited from the unique component,Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) shows a good rate performance with charge capacities of 203.9,194.8,187.4,180.6,and177.1 mAh·g^(-1)at 0.5,1,2,3,and 5 C,respectively.Nevertheless,pure LZTO only delivers charge capacities of 134.5,109.7,89.4,79.9,and 72.9 mAh·g^(-1)at the corresponding rates.Even at large charge–discharge rate,the Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g^(-1)at 5 C after 150 cycles.The introduction of LiAlO_(2)on the surface of Li_(2)Zn Ti_(3)O_(8)enhances electronic conductivity of the composite,resulting in the good electrochemical performance of Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)composite.Li_(2)Zn Ti_(3)O_(8)@LiAlO_(2)(8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries.
基金This study was financially supported by the National Science Foundation of China(No.52201254)the National Science Foundation of Shandong Province(Nos.ZR2020MB090 and ZR2020QE012)+1 种基金the Project of“20 Items of University”of Jinan(No.202228046)Taishan Scholar Project of Shandong Province.
文摘Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) composite was easily synthesized via one-step succinct-operated hydrothermal process.The interconnected Co_(3)V_(2)O_(8)/Co_(3)O_(4) nanowires network can in-situ grow and anchor on the surface of Ti_(3)C_(2)T_(x) via the strong Co-F bonds and contribute tremendously to depress Ti_(3)C_(2)T_(x) self-restacking.Profiting from the synergistically interplayed effect among the multiple interfaces and high conductivity of Ti_(3)C_(2)T_(x) as well as outstanding stability of the as-designed nanostructure,the optimum Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x)electrode reaches a commendable specific capacitance(up to 3800 mF·cm^(−2)),great rate capability(80%capacitance retention after 20-times current increasing),and preeminent cycling stability(95.4%/85.5%retention at 7000th/20,000th cycle).Moreover,the all-solid-state asymmetric supercapacitor based on Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) and active carbon can deliver a high energy density of 84.0μWh·cm^(−2) at the power energy of 3.2 mW·cm^(−2),and excellent cycling durability with 87.0%of initial capacitance retention upon 20,000 loops.This work provides a practicable pathway to tailor MXene-based composites for high-performance supercapacitor.
基金supported by the National Natural Science Foundation of China(No.22278347)State Key Laboratory of Physical Chemistry of Solid Surface(No.2021X21)State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources.
文摘The diffusion and loss of lithium polysulfides(LiPSs)in lithium-sulfur batteries(LSBs)reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species,resulting in early battery failure.Li_(2)ZnTi_(3)O_(8)(LZTO),characterized by its stable spinel structure,exhibits high Li+conductivity and holds great potential as an effective adsorbent for LiPSs.This study proposes a collaborative design concept of LZTO host–separator modifier,which offers a complementary and matching approach in the cathode side,effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs.Density functional theory(DFT)calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs.More importantly,the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles.Furthermore,the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves.Consequently,the LZTO host–separator modifier-based cell displays satisfactory rate capability(1449 and 1166 mAh·g^(−1)at 0.1 and 0.5 C)and an impressively capacity(606 mAh·g^(−1)after 500 cycles at 1 C).The coordinated strategy of host–separator modifier is supposed to have wide applications in LSBs.
基金financially supported by the National Natural Science Foundation of China(No.21476063)Guizhou Provincial Education Department(No.KY[2018]031)+2 种基金the Project of Hubei Provincial Science&Technology Department(No.2018ACA147)the Open-End Fund for Hubei Key Laboratory of Pollutant Analysis&Reuse Technology(No.PA200104)the China Scholarship Council(CSC)for scholarship support。
文摘Hollow micro-/nanostructures have achieved great success in the field of renewable battery materials by reducing the volume change and promoting the ion transport.Double-shelled Co_(3)V_(2)O__(8)hollow nanospheres(CVODSS)were synthesized using a facile solvothermal method followed by a thermal treatment in the absence of any surfactant.Meanwhile,two other architectures of hollow nanospheres and nanoparticles were obtained by changing the annealing temperature.Benefiting from the desired hollow structure,the CVO-DSS electrode exhibits excellent lithium storage properties as an anode.It exhibits a reversible discharge capacity of 1210 m Ah·g^(-1)at200 m A·g^(-1)after 100 cycles and a satisfactorily high rate capacity of 628 m Ah·g^(-1)after 800 cycles at 5000 m A·g^(-1).These hollow nanostructures can efficiently enhance the contact area of the electrolyte/electrode interface,promote the diffusion of lithium ions and electrons and slow down the capacity loss during long cycles.
文摘锂硫电池中多硫化锂的“穿梭效应”、单质硫导电性差等问题导致其寿命短、倍率性能差,严重限制了其实际应用.基于此,本文采用溶胶凝胶法合成了尖晶石型Li_(2)MnTi_(3)O_(8)(LMTO)纳米颗粒,将其同时作为硫宿主材料和功能隔膜涂层,极大地提升了锂硫电池的循环稳定性和Li+的扩散速率.均匀分散的LMTO纳米颗粒不仅能提供丰富的电化学活性位点,同时可减少活性硫的损失.此外,LMTO功能化隔膜具有吸附多硫化锂的能力,有效抑制了多硫化锂的穿梭.实验结果表明,以LMTO为硫宿主材料和功能隔膜涂层组装的锂硫电池在充放电过程中展现了较快的锂离子扩散速率(DLi+分别为2.25×10^(−5),1.31×10^(−5)和1.61×10^(−4)cm^(2)s^(−1)),表明其快速的反应动力学.在0.5 C的电流密度下,电池首次放电比容量可达到1059 mAh g^(−1),经过300次循环,容量稳定在797 mAh g^(−1).双功能改性后的电池性能均优于单功能改性的电池.该材料的双功能应用策略为开发高容量、长寿命的锂硫电池提供了理论支持.