Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are success...Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are successfully prepared using molecular precursor pyrolysis strategy.1D nanorod architecture possesses preeminent kinetic characteristics,shortening the ion diffusion path and increasing the contact area between electrode and electrolyte.The large specific surface area and charge polarization of rGO at the interface promote charge transfer.The capacity of material(BSG-400)reaches 558.4 m Ah g^(-1)at 0.2 A g^(-1)after 200 cycles.The anode properties of the composite outperform those of pristine Bi_(2)S_(3).The introduction of graphene enables the interfacial interaction between rGO and Bi_(2)S_(3).The closely contact interface improves the conductivity and lithium storage performances of Bi_(2)S_(3).The regulatory effect of rGO on the electronic density of states and band gap of Bi_(2)S_(3)has been demonstrated by theoretical calculation.The synthetic approach has the advantages of universality,simple operation procedure,and strong repeatability.This research provides some ideas for the preparation of other metal sulfides/rGO nanomaterials and their application in battery research.展开更多
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,wor...The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,working temperature,high energy density,and packaging,ASSLBs can develop an ideal energy storage system for modern electric vehicles(EVs).A solid electrolyte(SE)model must have an economical synthesis approach,exhibit electrochemical and chemical stability,high ionic conductivity,and low interfacial resistance.Owing to its highest conductivity of 17 mS·cm^(-1),and deformability,the sulfide-based Li_(7)P_(3)S_(11) solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs.Herein,we present a current glimpse of the progress of synthetic procedures,structural aspects,and ionic conductivity improvement strategies.Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques.The chemical stability of Li_(7)P_(3)S_(11) could be enhanced via oxide doping,and hard and soft acid/base(HSAB)concepts are also discussed.The issues to be undertaken for designing the ideal solid electrolytes,interfacial challenges,and high energy density have been discoursed.This review aims to provide a bird’s eye view of the recent development of Li_(7)P_(3)S_(11)-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density allsolid-state lithium batteries.展开更多
基金Financial supports from the National Natural Science Foundation of China(no.21401168)Dalian Institute of Chemical Physics(no.N-19-11)
文摘Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are successfully prepared using molecular precursor pyrolysis strategy.1D nanorod architecture possesses preeminent kinetic characteristics,shortening the ion diffusion path and increasing the contact area between electrode and electrolyte.The large specific surface area and charge polarization of rGO at the interface promote charge transfer.The capacity of material(BSG-400)reaches 558.4 m Ah g^(-1)at 0.2 A g^(-1)after 200 cycles.The anode properties of the composite outperform those of pristine Bi_(2)S_(3).The introduction of graphene enables the interfacial interaction between rGO and Bi_(2)S_(3).The closely contact interface improves the conductivity and lithium storage performances of Bi_(2)S_(3).The regulatory effect of rGO on the electronic density of states and band gap of Bi_(2)S_(3)has been demonstrated by theoretical calculation.The synthetic approach has the advantages of universality,simple operation procedure,and strong repeatability.This research provides some ideas for the preparation of other metal sulfides/rGO nanomaterials and their application in battery research.
基金the National Natural Science Foundation of China(51772030,21203008,21975025)the Natural Science Foundation of Beijing(2172051)+1 种基金Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023)the State Key Laboratory funding by the project for Modification of Chemical Fibers and Polymer Materials,Donghou University.
文摘The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,working temperature,high energy density,and packaging,ASSLBs can develop an ideal energy storage system for modern electric vehicles(EVs).A solid electrolyte(SE)model must have an economical synthesis approach,exhibit electrochemical and chemical stability,high ionic conductivity,and low interfacial resistance.Owing to its highest conductivity of 17 mS·cm^(-1),and deformability,the sulfide-based Li_(7)P_(3)S_(11) solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs.Herein,we present a current glimpse of the progress of synthetic procedures,structural aspects,and ionic conductivity improvement strategies.Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques.The chemical stability of Li_(7)P_(3)S_(11) could be enhanced via oxide doping,and hard and soft acid/base(HSAB)concepts are also discussed.The issues to be undertaken for designing the ideal solid electrolytes,interfacial challenges,and high energy density have been discoursed.This review aims to provide a bird’s eye view of the recent development of Li_(7)P_(3)S_(11)-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density allsolid-state lithium batteries.