期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bi_(2)S_(3)Nanorods Hosted on rGO Sheets from Pyrolysis of Molecular Precursors for Efficient Li-Ion Storage
1
作者 Zhongshuang Li Mengmeng He +7 位作者 Bing Bo Huijuan Wei Yanyan Liu Hao Wen Yushan Liu Ke Zhang Panke Zhang Baojun Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期577-585,共9页
Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are success... Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are successfully prepared using molecular precursor pyrolysis strategy.1D nanorod architecture possesses preeminent kinetic characteristics,shortening the ion diffusion path and increasing the contact area between electrode and electrolyte.The large specific surface area and charge polarization of rGO at the interface promote charge transfer.The capacity of material(BSG-400)reaches 558.4 m Ah g^(-1)at 0.2 A g^(-1)after 200 cycles.The anode properties of the composite outperform those of pristine Bi_(2)S_(3).The introduction of graphene enables the interfacial interaction between rGO and Bi_(2)S_(3).The closely contact interface improves the conductivity and lithium storage performances of Bi_(2)S_(3).The regulatory effect of rGO on the electronic density of states and band gap of Bi_(2)S_(3)has been demonstrated by theoretical calculation.The synthetic approach has the advantages of universality,simple operation procedure,and strong repeatability.This research provides some ideas for the preparation of other metal sulfides/rGO nanomaterials and their application in battery research. 展开更多
关键词 Bi_(2)s_(3) li-ion batteries molecular precursor NANORODs PYROLYsIs reduced graphene oxide
下载PDF
A panoramic view of Li_(7)P_(3)S_(11) solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries 被引量:2
2
作者 Muhammad Khurram Tufail Niaz Ahmad +4 位作者 Le Yang Lei Zhou Muhammad Adnan Naseer Renjie Chen Wen Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期16-36,共21页
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,wor... The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,working temperature,high energy density,and packaging,ASSLBs can develop an ideal energy storage system for modern electric vehicles(EVs).A solid electrolyte(SE)model must have an economical synthesis approach,exhibit electrochemical and chemical stability,high ionic conductivity,and low interfacial resistance.Owing to its highest conductivity of 17 mS·cm^(-1),and deformability,the sulfide-based Li_(7)P_(3)S_(11) solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs.Herein,we present a current glimpse of the progress of synthetic procedures,structural aspects,and ionic conductivity improvement strategies.Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques.The chemical stability of Li_(7)P_(3)S_(11) could be enhanced via oxide doping,and hard and soft acid/base(HSAB)concepts are also discussed.The issues to be undertaken for designing the ideal solid electrolytes,interfacial challenges,and high energy density have been discoursed.This review aims to provide a bird’s eye view of the recent development of Li_(7)P_(3)S_(11)-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density allsolid-state lithium batteries. 展开更多
关键词 li_(7)P_(3)s_(11)solid electrolyte 30li_(2)s-70P_(2)s_(5)glass ceramics Chemical stability Electrolyte/electrode interphase High energy density all-solid-state lithium batteries
下载PDF
纳米硫化锂/碳复合正极材料的制备及其电化学性能
3
作者 房彬 徐富良 +1 位作者 江永明 叶方敏 《浙江理工大学学报(自然科学版)》 2023年第1期43-49,共7页
为了提高硫化锂正极的倍率性能、抑制多硫化锂穿梭并降低成本,以三硫化二锂作为硫化锂的前驱体,聚乙烯吡咯烷酮和碳纳米管作为碳源,经高温处理制备纳米硫化锂/碳复合材料,以此作为锂硫电池的正极材料。采用扫描电子显微镜、X射线衍射仪... 为了提高硫化锂正极的倍率性能、抑制多硫化锂穿梭并降低成本,以三硫化二锂作为硫化锂的前驱体,聚乙烯吡咯烷酮和碳纳米管作为碳源,经高温处理制备纳米硫化锂/碳复合材料,以此作为锂硫电池的正极材料。采用扫描电子显微镜、X射线衍射仪、热重分析仪对该复合材料的形貌、结构以及组成进行表征,并进行电化学性能测试。结果表明:制备的纳米硫化锂/碳复合正极材料中,纳米硫化锂分散均匀并被热分解的碳包覆,合成的三硫化二锂前驱体在空气中具有一定的稳定性,能够降低纳米硫化锂的生产成本;将纳米硫化锂/碳复合正极材料用于锂硫电池时,在0.07 C(1 C=1166 mA/g)倍率下初始放电比容量达910 mAh/g,在1.00 C高倍率下循环150次后,可逆容量保持在484 mAh/g,这表明纳米硫化锂/碳的活性物质利用率较高、多硫化锂穿梭较弱。采用三硫化二锂前驱体制备高性能硫化锂复合材料,工艺成本低,有助于硫化锂正极材料的实际应用。 展开更多
关键词 硫化锂正极 三硫化二锂前驱体 碳纳米管 聚乙烯吡咯烷酮 锂硫电池 空气稳定性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部