For time-of-flight(TOF)light detection and ranging(LiDAR),a three-channel high-performance transimpedance amplifier(TIA)with high immunity to input load capacitance is presented.A regulated cascade(RGC)as the input st...For time-of-flight(TOF)light detection and ranging(LiDAR),a three-channel high-performance transimpedance amplifier(TIA)with high immunity to input load capacitance is presented.A regulated cascade(RGC)as the input stage is at the core of the complementary metal oxide semiconductor(CMOS)circuit chip,giving it more immunity to input photodiode detectors.A simple smart output interface acting as a feedback structure,which is rarely found in other designs,reduces the chip size and power consumption simultaneously.The circuit is designed using a 0.5μm CMOS process technology to achieve low cost.The device delivers a 33.87 dB?transimpedance gain at 350 MHz.With a higher input load capacitance,it shows a-3 dB bandwidth of 461 MHz,indicating a better detector tolerance at the front end of the system.Under a 3.3 V supply voltage,the device consumes 5.2 mW,and the total chip area with three channels is 402.8×597.0μm2(including the test pads).展开更多
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da...With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.展开更多
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ...The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.展开更多
We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers con...We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers constructed by a threeelement laser array with self-feedback.The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection,which are utilized as nonlinear nodes to realize the reservoirs.We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir,even when parameter mismatches exist between the response laser array and the driving laser array.Based on this,the three synchronous probe signals are utilized for ranging to three targets,respectively,using Hilbert transform.It is demonstrated that the relative errors for ranging can be very small and less than 0.6%.Our findings show that optical reservoir computing provides an effective way for applications of target ranging.展开更多
Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak pow...Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.展开更多
The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of air...The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.展开更多
Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development ...Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization(RECAT) programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization(ICAO) regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging(LIDAR) sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR's can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.展开更多
Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high q...Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN( triangulated irregular network) densification( SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally,the datasets provided by ISPRS are utilized to test the filtering performance.In comparison with the commercial software Terra Solid,the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.展开更多
CWD (coarse woody debris) plays an important role in nutrient cycling, habitat for species and more recently carbon accounting in forest ecosystems. LiDAR (light detection and ranging) technology has demonstrated ...CWD (coarse woody debris) plays an important role in nutrient cycling, habitat for species and more recently carbon accounting in forest ecosystems. LiDAR (light detection and ranging) technology has demonstrated utility in capturing forest structure information. This paper proposes an indirect method of assessing downed CWD using LiDAR derived forest structure variables. Fieldwork was conducted to measure CWD volume in an Eucalyptus forest in Tasmania. A GLM (generalized linear model) to statistically estimate CWD volume in the Eucalyptus forest was developed using a LiDAR derived FCS (forest characterisation scheme): the openings above the ground, low and medium vegetation, canopy cover, presence of understorey and mid-storey vegetation and high trees, and the vertical canopy density of high trees. Five structural variables were selected for the best model based on AIC (Akaike's Information Criterion) by stepwise selection. The applicability of the model was then compared to the outcome of model using field derived variables such as diameter at breast height of trees. The results show that the model using LiDAR derived variables better estimated the amount of CWD. It is concluded that LiDAR derived forest structural variables has the potential to predict the amount of downed CWD in Eucalyptus forest.展开更多
Background: Remote sensing-based mapping of forest Ecosystem Service(ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize t...Background: Remote sensing-based mapping of forest Ecosystem Service(ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize the land use in subsequent decision analyses. However, the mapping is often based on readily available data, such as land cover maps and other publicly available databases, and ignoring the related uncertainties.Methods: This study tested the potential to improve the robustness of the decisions by means of local model fitting and uncertainty analysis. The quality of forest land use prioritization was evaluated under two different decision support models: either using the developed models deterministically or in corporation with the uncertainties of the models.Results: Prediction models based on Airborne Laser Scanning(ALS) data explained the variation in proxies of the suitability of forest plots for maintaining biodiversity, producing timber, storing carbon, or providing recreational uses(berry picking and visual amenity) with RMSEs of 15%–30%, depending on the ES. The RMSEs of the ALS-based predictions were 47%–97%of those derived from forest resource maps with a similar resolution. Due to applying a similar field calibration step on both of the data sources, the difference can be attributed to the better ability of ALS to explain the variation in the ES proxies.Conclusions: Despite the different accuracies, proxy values predicted by both the data sources could be used for a pixel-based prioritization of land use at a resolution of 250 m~2, i.e., in a considerably more detailed scale than required by current operational forest management. The uncertainty analysis indicated that maps of the ES provisioning potential should be prepared separately based on expected and extreme outcomes of the ES proxy models to fully describe the production possibilities of the landscape under the uncertainties in the models.展开更多
Background: Tree species recognition is the main bottleneck in remote sensing based inventories aiming to produce an input for species-specific growth and yield models. We hypothesized that a stratification of the ta...Background: Tree species recognition is the main bottleneck in remote sensing based inventories aiming to produce an input for species-specific growth and yield models. We hypothesized that a stratification of the target data according to the dominant species could improve the subsequent predictions of species-specific attributes in particular in study areas strongly dominated by certain species. Methods: We tested this hypothesis and an operational potential to improve the predictions of timber volumes, stratified to Scots pine, Norway spruce and deciduous trees, in a conifer forest dominated by the pine species. We derived predictor features from airborne laser scanning (ALS) data and used Most Similar Neighbor (MSN) and Seemingly Unrelated Regression (SUR) as examples of non-parametric and parametric prediction methods, respectively Results: The relationships between the ALS features and the volumes of the aforementioned species were considerably different depending on the dominant species. Incorporating the observed dominant species inthe predictions improved the root mean squared errors by 13.3-16.4 % and 12.6-28.9 % based on MSN and SUR, respectively, depending on the species. Predicting the dominant species based on a linear discriminant analysis had an overall accuracy of only 76 % at best, which degraded the accuracies of the predicted volumes. Consequently, the predictions that did not consider the dominant species were more accurate than those refined with the predicted species. The MSN method gave slightly better results than models fitted with SUR. Conclusions: According to our results, incorporating information on the dominant species has a clear potential to improve the subsequent predictions of species-specific forest attributes. Determining the dominant species based solely on ALS data is deemed challenging, but important in particular in areas where the species composition is otherwise seemingly homogeneous except being dominated by certain species.展开更多
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dens...Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002) Keywords World Trade Center (WTC) - terrorism - emergency response - emergency management - ground zero - remote sensing - emergency operations - disasters - geographic information systems (GIS) - satellite imagery - synthetic aperture radar (SAR) - light detection and ranging imagery (LIDAR)展开更多
This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed ...This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.展开更多
新工科建设是中国高等教育改革的重大工程,对支撑国家创新驱动发展具有重要战略意义。从新工科建设的背景和要求出发,围绕激光雷达(light detection and ranging,LiDAR)测量这一目前在新型基础测绘中占据重要位置的测绘技术,对该课程在...新工科建设是中国高等教育改革的重大工程,对支撑国家创新驱动发展具有重要战略意义。从新工科建设的背景和要求出发,围绕激光雷达(light detection and ranging,LiDAR)测量这一目前在新型基础测绘中占据重要位置的测绘技术,对该课程在测绘高等教育中的教学思路进行了探讨。在LiDAR的技术特点和应用领域分析的基础上,以科学、技术、工程、数学(science technology engineering and mathematics,STEM)教育理念为指导,提出了以应用为驱动、理论与实践相结合,以跨学科交叉为引导、面向工程应用创新的LiDAR测量课程教学思路,进一步提升LiDAR工程应用人才培养的质量。展开更多
A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in abov...A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software- Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.展开更多
文摘For time-of-flight(TOF)light detection and ranging(LiDAR),a three-channel high-performance transimpedance amplifier(TIA)with high immunity to input load capacitance is presented.A regulated cascade(RGC)as the input stage is at the core of the complementary metal oxide semiconductor(CMOS)circuit chip,giving it more immunity to input photodiode detectors.A simple smart output interface acting as a feedback structure,which is rarely found in other designs,reduces the chip size and power consumption simultaneously.The circuit is designed using a 0.5μm CMOS process technology to achieve low cost.The device delivers a 33.87 dB?transimpedance gain at 350 MHz.With a higher input load capacitance,it shows a-3 dB bandwidth of 461 MHz,indicating a better detector tolerance at the front end of the system.Under a 3.3 V supply voltage,the device consumes 5.2 mW,and the total chip area with three channels is 402.8×597.0μm2(including the test pads).
基金supported by a grant from the National Key Research and Development Project(2023YFB4302100)Key Research and Development Project of Jiangxi Province(No.20232ACE01011)Independent Deployment Project of Ganjiang Innovation Research Institute,Chinese Academy of Sciences(E255J001).
文摘Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
基金supported by the National Key Research and Development Project(No.2020YFC1512000)the General Projects of Key R&D Programs in Shaanxi Province(No.2020GY-060)Xi’an Science&Technology Project(No.2020KJRC 0126)。
文摘With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.
基金the National Key R&D Program of China(2018AAA0103103).
文摘The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
基金the National Natural Science Foundation of China(Grant No.62075168)Guang Dong Basic and Applied Basic Research Foundation(Grant No.2020A1515011088)Special Project in Key Fields of Guangdong Provincial Department of Education of China(Grant No.2020ZDZX3052 and 2019KZDZX1025)。
文摘We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers constructed by a threeelement laser array with self-feedback.The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection,which are utilized as nonlinear nodes to realize the reservoirs.We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir,even when parameter mismatches exist between the response laser array and the driving laser array.Based on this,the three synchronous probe signals are utilized for ranging to three targets,respectively,using Hilbert transform.It is demonstrated that the relative errors for ranging can be very small and less than 0.6%.Our findings show that optical reservoir computing provides an effective way for applications of target ranging.
基金National Key Research and Development Plan(No.2017YFF0204800)Natural Science Foundation of Tianjin(No.17JCQNJC01100)+3 种基金National Natural Science Foundation of China(Nos.61501319,51775377,61505140)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Micro Opto-electro Mechanical System Technology(No.MOMST2015-7)Open Project from Photoelectric Information and Instrument-Engineering Research Center of Beijing,Tianjin University,Ministry of Education(No.GD2015007)
文摘Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB72400401A)
文摘The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.
文摘Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization(RECAT) programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization(ICAO) regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging(LIDAR) sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR's can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.
基金Supported by the National Natural Science Foundation of China(No.41174002)the Opening Fund of Key Laboratory of the Ministry of Water Resources(No.2015003)the Fundamental Research Funds for the Central Universities(No.2014B38614)
文摘Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN( triangulated irregular network) densification( SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally,the datasets provided by ISPRS are utilized to test the filtering performance.In comparison with the commercial software Terra Solid,the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.
文摘CWD (coarse woody debris) plays an important role in nutrient cycling, habitat for species and more recently carbon accounting in forest ecosystems. LiDAR (light detection and ranging) technology has demonstrated utility in capturing forest structure information. This paper proposes an indirect method of assessing downed CWD using LiDAR derived forest structure variables. Fieldwork was conducted to measure CWD volume in an Eucalyptus forest in Tasmania. A GLM (generalized linear model) to statistically estimate CWD volume in the Eucalyptus forest was developed using a LiDAR derived FCS (forest characterisation scheme): the openings above the ground, low and medium vegetation, canopy cover, presence of understorey and mid-storey vegetation and high trees, and the vertical canopy density of high trees. Five structural variables were selected for the best model based on AIC (Akaike's Information Criterion) by stepwise selection. The applicability of the model was then compared to the outcome of model using field derived variables such as diameter at breast height of trees. The results show that the model using LiDAR derived variables better estimated the amount of CWD. It is concluded that LiDAR derived forest structural variables has the potential to predict the amount of downed CWD in Eucalyptus forest.
基金originally supported by the Research Funds of University of Helsinki
文摘Background: Remote sensing-based mapping of forest Ecosystem Service(ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize the land use in subsequent decision analyses. However, the mapping is often based on readily available data, such as land cover maps and other publicly available databases, and ignoring the related uncertainties.Methods: This study tested the potential to improve the robustness of the decisions by means of local model fitting and uncertainty analysis. The quality of forest land use prioritization was evaluated under two different decision support models: either using the developed models deterministically or in corporation with the uncertainties of the models.Results: Prediction models based on Airborne Laser Scanning(ALS) data explained the variation in proxies of the suitability of forest plots for maintaining biodiversity, producing timber, storing carbon, or providing recreational uses(berry picking and visual amenity) with RMSEs of 15%–30%, depending on the ES. The RMSEs of the ALS-based predictions were 47%–97%of those derived from forest resource maps with a similar resolution. Due to applying a similar field calibration step on both of the data sources, the difference can be attributed to the better ability of ALS to explain the variation in the ES proxies.Conclusions: Despite the different accuracies, proxy values predicted by both the data sources could be used for a pixel-based prioritization of land use at a resolution of 250 m~2, i.e., in a considerably more detailed scale than required by current operational forest management. The uncertainty analysis indicated that maps of the ES provisioning potential should be prepared separately based on expected and extreme outcomes of the ES proxy models to fully describe the production possibilities of the landscape under the uncertainties in the models.
基金financed by the Finnish Funding Agency for Innovation(Tekes) and its business and research partners
文摘Background: Tree species recognition is the main bottleneck in remote sensing based inventories aiming to produce an input for species-specific growth and yield models. We hypothesized that a stratification of the target data according to the dominant species could improve the subsequent predictions of species-specific attributes in particular in study areas strongly dominated by certain species. Methods: We tested this hypothesis and an operational potential to improve the predictions of timber volumes, stratified to Scots pine, Norway spruce and deciduous trees, in a conifer forest dominated by the pine species. We derived predictor features from airborne laser scanning (ALS) data and used Most Similar Neighbor (MSN) and Seemingly Unrelated Regression (SUR) as examples of non-parametric and parametric prediction methods, respectively Results: The relationships between the ALS features and the volumes of the aforementioned species were considerably different depending on the dominant species. Incorporating the observed dominant species inthe predictions improved the root mean squared errors by 13.3-16.4 % and 12.6-28.9 % based on MSN and SUR, respectively, depending on the species. Predicting the dominant species based on a linear discriminant analysis had an overall accuracy of only 76 % at best, which degraded the accuracies of the predicted volumes. Consequently, the predictions that did not consider the dominant species were more accurate than those refined with the predicted species. The MSN method gave slightly better results than models fitted with SUR. Conclusions: According to our results, incorporating information on the dominant species has a clear potential to improve the subsequent predictions of species-specific forest attributes. Determining the dominant species based solely on ALS data is deemed challenging, but important in particular in areas where the species composition is otherwise seemingly homogeneous except being dominated by certain species.
基金the Earthquake Engineering Research Centers Program of the National Science Foundation(NSF) under a Supplement to Award Number ECC-9701471 to the Multidisciplinary Center for Earthquake Engineering Research
文摘Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002) Keywords World Trade Center (WTC) - terrorism - emergency response - emergency management - ground zero - remote sensing - emergency operations - disasters - geographic information systems (GIS) - satellite imagery - synthetic aperture radar (SAR) - light detection and ranging imagery (LIDAR)
基金supported in part by the National Natural Science Foundation of China(Nos.42271343,42177387)the Fund of State Key Laboratory of Remote Sensing Information and Image Analysis Technology of Beijing Research Institute of Uranium Geology under(No.6142A010403)
文摘This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.
文摘新工科建设是中国高等教育改革的重大工程,对支撑国家创新驱动发展具有重要战略意义。从新工科建设的背景和要求出发,围绕激光雷达(light detection and ranging,LiDAR)测量这一目前在新型基础测绘中占据重要位置的测绘技术,对该课程在测绘高等教育中的教学思路进行了探讨。在LiDAR的技术特点和应用领域分析的基础上,以科学、技术、工程、数学(science technology engineering and mathematics,STEM)教育理念为指导,提出了以应用为驱动、理论与实践相结合,以跨学科交叉为引导、面向工程应用创新的LiDAR测量课程教学思路,进一步提升LiDAR工程应用人才培养的质量。
基金supported by UK Engineering and Physical Sciences Research Council(EPSRC)Supergen Wind project(No.EP/N006224/1)
文摘A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software- Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.