Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide...Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.展开更多
Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identi...Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.展开更多
Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, t...Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.展开更多
A new higher-dimensional Lie algebra is constructed,which is used to generate multiple integrable couplingssimultaneously.From this,we come to a general approach for seeking multi-integrable couplings of the known int...A new higher-dimensional Lie algebra is constructed,which is used to generate multiple integrable couplingssimultaneously.From this,we come to a general approach for seeking multi-integrable couplings of the known integrablesoliton equations.展开更多
Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integra...Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.展开更多
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice ...The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtai...In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.展开更多
A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarch...A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarchy of equations, is obtained by taking use of the zero curvature equation, whose Hamiltonian structure is worked out by employing the constructed quadratic identity.展开更多
Nonlinear super integrable couplings of the super Yang hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity. ...Nonlinear super integrable couplings of the super Yang hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of Yang hierarchy were obtained.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
The Hamiltonian structure of.the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratlc-form identity.
We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its r...We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its reduction,we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loo...An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.展开更多
From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebrasare obtained.Two expanding integrable systems are produced with the help of the generalized zero curvature equati...From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebrasare obtained.Two expanding integrable systems are produced with the help of the generalized zero curvature equation.One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM).展开更多
A new Lax integrable hierarchy is obtained by constructing an isospectraJ problem with constrained conditions. Two kinds of integrable couplings are obtained by constructing two new expanding Lie algebras of the Lie a...A new Lax integrable hierarchy is obtained by constructing an isospectraJ problem with constrained conditions. Two kinds of integrable couplings are obtained by constructing two new expanding Lie algebras of the Lie algebra Be, respectively.展开更多
This paper establishes a new isospectral problem. By making use of the Tu scheme, a new intcgrablc system is obtained. It gives integrable couplings of the system obtained. Finally, the Hamiltonian form of a binary sy...This paper establishes a new isospectral problem. By making use of the Tu scheme, a new intcgrablc system is obtained. It gives integrable couplings of the system obtained. Finally, the Hamiltonian form of a binary symmetric constrained flow of the system obtained is presented.展开更多
To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of t...To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.展开更多
Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identit...Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identity. As its reduction, special cases of this nonlinear super integrable coupling were obtained.展开更多
基金Supported by the Fundamental Research Funds of the Central University under Grant No. 2010LKS808the Natural Science Foundation of Shandong Province under Grant No. ZR2009AL021
文摘Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.
基金Supported by the Natural Science Foundation of Henan Province(162300410075) the Science and Technology Key Research Foundation of the Education Department of Henan Province(14A110010) the Youth Backbone Teacher Foundationof Shangqiu Normal University(2013GGJS02)
文摘Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.
基金The project supported by National Natural Science Foundation of China under Grant No.10471139
文摘A new higher-dimensional Lie algebra is constructed,which is used to generate multiple integrable couplingssimultaneously.From this,we come to a general approach for seeking multi-integrable couplings of the known integrablesoliton equations.
基金The project supported by National Natural Science Foundation of China under Grant No. 50275013
文摘Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.
基金*The project supported by the National Key Basic Research Development of China under Grant No. N1998030600 and National Natural Science Foundation of China under Grant No. 10072013
文摘The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
文摘In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.
基金Supported by the Scientific Research Ability Foundation for Young Teacher of Northwest Normal University under Grant No.NWNULKQN -10-25
文摘A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarchy of equations, is obtained by taking use of the zero curvature equation, whose Hamiltonian structure is worked out by employing the constructed quadratic identity.
文摘Nonlinear super integrable couplings of the super Yang hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of Yang hierarchy were obtained.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘The Hamiltonian structure of.the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratlc-form identity.
基金Supported by the Natural Science Foundation of China under Grant No. 60972164the Program for Liaoning Excellent Talents in University under Grant No. LJQ2011136+2 种基金the Key Technologies R&D Program of Liaoning Province under Grant No. 2011224006the Program for Liaoning Innovative Research Team in University under Grant No. LT2011019the Science and Technology Program of Shenyang under Grant No. F11-264-1-70
文摘We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its reduction,we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
文摘An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.
基金Supported by the Natural Science Foundation of China under Grant Nos.60971022,61072147,and 11071159the Natural Science Foundation of Shanghai under Grant No.09ZR1410800+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101the National Key Basic Research Project of China under Grant No.KLMM0806
文摘From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebrasare obtained.Two expanding integrable systems are produced with the help of the generalized zero curvature equation.One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM).
基金Supported by National Natural Science Foundation of China under Grant No. 70971079
文摘A new Lax integrable hierarchy is obtained by constructing an isospectraJ problem with constrained conditions. Two kinds of integrable couplings are obtained by constructing two new expanding Lie algebras of the Lie algebra Be, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No 10371070), the Special Funds for Major Specialities of Shanghai Educational Committee and Science Foundation of Educational Committee of Liaoning Province of China (Grant No 2004C057). Xia T Ch would like to express his sincere thanks to Professors Zhang Y F and Guo F K for valuable discussions.
文摘This paper establishes a new isospectral problem. By making use of the Tu scheme, a new intcgrablc system is obtained. It gives integrable couplings of the system obtained. Finally, the Hamiltonian form of a binary symmetric constrained flow of the system obtained is presented.
基金Supported by the National Natural Science Foundation of China under Grant No.10971031
文摘To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.
文摘Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identity. As its reduction, special cases of this nonlinear super integrable coupling were obtained.