In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation and the...In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation and the second order correction of particle trajectory in the state space. Beam having K-V distribution and Gaussian distribution approximation are respectively considered. A brief discussion is also given of the total effects of the quadrupole and the space charge forces on the evolution of the beam envelope.展开更多
This paper uses the Lie algebraic method to analyse the charged particle trajectories in the spherical electrostatic analyser, and obtains the nonlinear solutions. The results show that the focusing abilities both in ...This paper uses the Lie algebraic method to analyse the charged particle trajectories in the spherical electrostatic analyser, and obtains the nonlinear solutions. The results show that the focusing abilities both in the x and y directions of the analyser are almost the same. Moreover, there exist dispersion effects in the x direction, and no dispersion effects in the y direction.展开更多
基金Supported by National Natural Science Foundation of China(1057009)
文摘In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation and the second order correction of particle trajectory in the state space. Beam having K-V distribution and Gaussian distribution approximation are respectively considered. A brief discussion is also given of the total effects of the quadrupole and the space charge forces on the evolution of the beam envelope.
基金Project supported by the National Natural Science Foundation of China (Grant No 1057009).
文摘This paper uses the Lie algebraic method to analyse the charged particle trajectories in the spherical electrostatic analyser, and obtains the nonlinear solutions. The results show that the focusing abilities both in the x and y directions of the analyser are almost the same. Moreover, there exist dispersion effects in the x direction, and no dispersion effects in the y direction.