In this paper, through a meticulous description of finite root system,a concrete comultiplication with an explicit action on the basis elements of finitedimensional simple Lie algebras of type A; D; E is constructed. ...In this paper, through a meticulous description of finite root system,a concrete comultiplication with an explicit action on the basis elements of finitedimensional simple Lie algebras of type A; D; E is constructed. Then any finitedimensional simple Lie algebra of type A; D; E is endowed with a new generalizedLie coalgebra splitting. This construction verifies the known existence of a co-splitLie structure on any finite dimensional complex simple Lie algebra.展开更多
3-Lie algebras have close relationships with many important fields in mathemat- ics and mathematical physics. This article concerns 3-Lie algebras. The concepts of 3-Lie coalgebras and 3-Lie bialgebras are given. The ...3-Lie algebras have close relationships with many important fields in mathemat- ics and mathematical physics. This article concerns 3-Lie algebras. The concepts of 3-Lie coalgebras and 3-Lie bialgebras are given. The structures of such categories of algebras and the relationships with 3-Lie algebras are studied. And the classification of 4-dimensional 3-Lie coalgebras and 3-dimensional 3-Lie bialgebras over an algebraically closed field of char- acteristic zero are provided.展开更多
A Lie 2-bialgebra is a Lie 2-algebra equipped with a compatible Lie 2-coalgebra structure. In this paper, we give another equivalent description for Lie2-bialgebras by using the structure maps and compatibility condit...A Lie 2-bialgebra is a Lie 2-algebra equipped with a compatible Lie 2-coalgebra structure. In this paper, we give another equivalent description for Lie2-bialgebras by using the structure maps and compatibility conditions. We can use this method to check whether a 2-term direct sum of vector spaces is a Lie 2-bialgebra easily.展开更多
In this paper,we first give a direct sum decomposition of Lie comodules,and then accord- ing to the Lie comodule theory,construct some(triangular)Lie bialgebras through Lie coalgebras.
In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2...In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2,2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.展开更多
基金The Anhui Province College Excellent Young Talents Fund(2013SQRL071ZD)
文摘In this paper, through a meticulous description of finite root system,a concrete comultiplication with an explicit action on the basis elements of finitedimensional simple Lie algebras of type A; D; E is constructed. Then any finitedimensional simple Lie algebra of type A; D; E is endowed with a new generalizedLie coalgebra splitting. This construction verifies the known existence of a co-splitLie structure on any finite dimensional complex simple Lie algebra.
基金partially supported by NSF(11371245)of ChinaNSF(A2010000194)of Hebei Province
文摘3-Lie algebras have close relationships with many important fields in mathemat- ics and mathematical physics. This article concerns 3-Lie algebras. The concepts of 3-Lie coalgebras and 3-Lie bialgebras are given. The structures of such categories of algebras and the relationships with 3-Lie algebras are studied. And the classification of 4-dimensional 3-Lie coalgebras and 3-dimensional 3-Lie bialgebras over an algebraically closed field of char- acteristic zero are provided.
文摘A Lie 2-bialgebra is a Lie 2-algebra equipped with a compatible Lie 2-coalgebra structure. In this paper, we give another equivalent description for Lie2-bialgebras by using the structure maps and compatibility conditions. We can use this method to check whether a 2-term direct sum of vector spaces is a Lie 2-bialgebra easily.
基金Supported by Natural Science Foundation for Colleges and Universities in Jiangsu Province(12KJD110003)National Natural Science Foundation of China(11226070)
基金the Educational Ministry Key Foundation of China(Grant No.108154)the National Natural Science Foundation of China(Grant No.10571153)
文摘In this paper,we first give a direct sum decomposition of Lie comodules,and then accord- ing to the Lie comodule theory,construct some(triangular)Lie bialgebras through Lie coalgebras.
基金Supported by NSF grant of China and NSF grant of Shandong Province(Grant Nos.11431010,11671056,ZR2013AL013 and ZR2014AL001)
文摘In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2,2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.