For a Lie triple system T over a field of characteristic zero, some sufficient conditions for T to be two-generated are proved. We also discuss to what extent the two-generated subsystems determine the structure of th...For a Lie triple system T over a field of characteristic zero, some sufficient conditions for T to be two-generated are proved. We also discuss to what extent the two-generated subsystems determine the structure of the system T . One of the main results is that T is solvable if and only if every two elements generates a solvable subsystem. In fact, we give an explicit two-generated law for the two-generated subsystems.展开更多
As a natural generalization of a restricted Lie algebra, a restricted Lie triple system was defined by Hodge. In this paper, we develop initially the Frattini theory for restricted Lie triple systems, generalize some ...As a natural generalization of a restricted Lie algebra, a restricted Lie triple system was defined by Hodge. In this paper, we develop initially the Frattini theory for restricted Lie triple systems, generalize some results of Frattini p-subalgebra for restricted Lie algebras, obtain some properties of the Frattini p-subsystem and give the relationship between Фp(T) and Ф(T) for solvable Lie triple systems.展开更多
文摘For a Lie triple system T over a field of characteristic zero, some sufficient conditions for T to be two-generated are proved. We also discuss to what extent the two-generated subsystems determine the structure of the system T . One of the main results is that T is solvable if and only if every two elements generates a solvable subsystem. In fact, we give an explicit two-generated law for the two-generated subsystems.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10701019 and 10871057)the Fundamental Research Funds for the Central Universities, the ZJZSF (Grant Nos. Y607136, D7080080)+1 种基金Qianjiang Excellence Project (Grant No. 2007R10031)the New Century 151 Talent Project (2008) of Zhejiang Province
文摘As a natural generalization of a restricted Lie algebra, a restricted Lie triple system was defined by Hodge. In this paper, we develop initially the Frattini theory for restricted Lie triple systems, generalize some results of Frattini p-subalgebra for restricted Lie algebras, obtain some properties of the Frattini p-subsystem and give the relationship between Фp(T) and Ф(T) for solvable Lie triple systems.