期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lienard方程极限环的存在性
1
作者 崔伟业 《齐齐哈尔师范学院学报(自然科学版)》 1994年第4期4-6,共3页
本文证明,当Lienard方程的解不满足唯一性时,这个方程的极限环的存在性问题,从而推广了文献[4]的有关结果.
关键词 极限环 存在性 林纳方程
下载PDF
THEOREM OF EXISTENCE OF EXACT n LIMIT CYCLES FOR LINARD'S EQUATION
2
作者 丁孙荭 《Science China Mathematics》 SCIE 1983年第5期449-459,共11页
Liénard’s equation is a kind of important ordinary differential equations frequently appearing in engineering and technology, and hence receives great attention of many mathematicians. In 1949, H. J. Eckweiler c... Liénard’s equation is a kind of important ordinary differential equations frequently appearing in engineering and technology, and hence receives great attention of many mathematicians. In 1949, H. J. Eckweiler conjectured that the equation +μsin+x=0 has infinite number of limit cycles. Then H. S. Hochstadt and B. Stephan, R. N. D’Heedene and others proved that this equation has at least n limit cycles in the interval |x|<(n+1)π for specified parameter μ. In 1980, Professor Zhang Zhifen proved that this equation has exact n limit cycles in the interval |x|<(n+1)π for any nonzero parameter μ, and thus pushed the related work forward greatly. In this paper, we shall prove that the Liénard’s equation has exact n limit cycles in a finite interval under a class of very general condition. 展开更多
关键词 NARD’s equation THEOREM OF EXIsTENCE OF EXACT n limit cycles FOR LI
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部