This short digest is devoted to the mechanism of ring formation during the origination and evolution of planetary and satellite systems in the Universe. The appearance of these structures can be traced back to the phe...This short digest is devoted to the mechanism of ring formation during the origination and evolution of planetary and satellite systems in the Universe. The appearance of these structures can be traced back to the phenomenon of spatially periodic condensation which can be observed on the Earth. The author actually posited the existence of exoplanetary systems and the cosmic scale of this phenomenon. It was accurately predicted that Uranus, Neptune and other heavenly bodies have rings. The suggested general mechanism rationalized the Titius-Bode law which, while not being a precise law, often accurately describes the tendency towards varying distances between planets (and their moons) and central bodies. The possibility of this law manifestation in exoplanetary systems had been predicted by the author long before their discovery. Many exoplanetary systems have been discovered by now and there is some evidence corroborating the mechanism of spatially periodic condensation involved in the formation of ring-like structures in these systems. The author’s hypothesis is now becoming a theory or a fact. It appears that we are now witnessing the dawn of a new extensive cosmology, taking into account general physicochemical mechanisms of space object formation.展开更多
The dynamics of the Liesegang type pattern formation is investigated in a centrally symmetric two-dimensional setup.According to the observations in real experiments,the qualitative change of the dynamics is exhibited...The dynamics of the Liesegang type pattern formation is investigated in a centrally symmetric two-dimensional setup.According to the observations in real experiments,the qualitative change of the dynamics is exhibited for slightly different initial conditions.Two kinds of chemical mechanisms are studied;in both cases the pattern formation is described using a phase separation model including the CahnHilliard equations.For the numerical simulations we make use of an adaptive grid PDE method,which successfully deals with the computationally critical cases such as steep gradients in the concentration distribution and investigation of long time behavior.The numerical simulations show a good agreement with the real experiments.展开更多
文摘This short digest is devoted to the mechanism of ring formation during the origination and evolution of planetary and satellite systems in the Universe. The appearance of these structures can be traced back to the phenomenon of spatially periodic condensation which can be observed on the Earth. The author actually posited the existence of exoplanetary systems and the cosmic scale of this phenomenon. It was accurately predicted that Uranus, Neptune and other heavenly bodies have rings. The suggested general mechanism rationalized the Titius-Bode law which, while not being a precise law, often accurately describes the tendency towards varying distances between planets (and their moons) and central bodies. The possibility of this law manifestation in exoplanetary systems had been predicted by the author long before their discovery. Many exoplanetary systems have been discovered by now and there is some evidence corroborating the mechanism of spatially periodic condensation involved in the formation of ring-like structures in these systems. The author’s hypothesis is now becoming a theory or a fact. It appears that we are now witnessing the dawn of a new extensive cosmology, taking into account general physicochemical mechanisms of space object formation.
基金support from the Dutch BSIK-project BRICKSthe financial support of the Bolyai Research Fellow-ship,the Hungarian Scientific Research Fund(OTKA K68253 and K81933)the European Union and the European Social Fund(TAMOP 4.2.1./B-09/KMR-2010-0003).
文摘The dynamics of the Liesegang type pattern formation is investigated in a centrally symmetric two-dimensional setup.According to the observations in real experiments,the qualitative change of the dynamics is exhibited for slightly different initial conditions.Two kinds of chemical mechanisms are studied;in both cases the pattern formation is described using a phase separation model including the CahnHilliard equations.For the numerical simulations we make use of an adaptive grid PDE method,which successfully deals with the computationally critical cases such as steep gradients in the concentration distribution and investigation of long time behavior.The numerical simulations show a good agreement with the real experiments.