期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Life cycle cost analysis of new FRP based solar parabolic trough collector hot water generation system 被引量:1
1
作者 A. VALAN ARASU T. SORNAKUMAR 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期416-422,共7页
Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fib... Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems. 展开更多
关键词 Economic analysis life cycle savings life cycle cost (LCS) Parabolic trough collector (PTC) Solar water heating system (SWHS)
下载PDF
Energy and Emission Reduction Potential for Bank ATM Units in India
2
作者 Hemant Kumar Singh Ravi Prakash Karunesh Kumar Shukla 《Open Journal of Energy Efficiency》 2016年第4期107-120,共15页
With the growing economy of India, banking sector growth has led to installation of thousands of Automatic Teller Machines (ATMs) throughout the country. ATMs provide 24 × 7 services as well as operate at low-tem... With the growing economy of India, banking sector growth has led to installation of thousands of Automatic Teller Machines (ATMs) throughout the country. ATMs provide 24 × 7 services as well as operate at low-temperature ranges of cooling, hence have high operating energy costs. Insulating an ATM’s envelope is not a prevalent technique in India. In the present study, an effort has been made to determine the optimum insulation thickness for three different insulation materials for the typical ATM envelope in four different climatic zones of India. Life cycle savings and payback periods for various insulation materials are also evaluated. Further, these optimally insulated ATM envelopes can be integrated with grid connected rooftop solar PV systems. The energy saving and emissions reduction potential due to these two interventions have been estimated on the national basis. Altogether in the four selected climate zones, energy saving of 17% - 30% provides the annual economic benefit of Indian National Rupees (Rs.) 3570 million with annual carbon reduction potential of about 0.60 million tCO<sub>2</sub>. From this study, it is observed that properly insulated ATMs integrated with rooftop solar PV systems, can significantly reduce the energy costs as well as carbon emissions in India’s context. 展开更多
关键词 life cycle Cost Optimum Insulation Thickness life cycle saving Solar PV Payback Period Carbon Emissions
下载PDF
Optimum insulation thickness for the sandwich structure livestock buildings external envelopes in different climate regions of China 被引量:1
3
作者 Yang Wang Baoming Li Weichao Zheng 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第1期29-41,共13页
Determining the optimum insulation thicknesses of external envelopes for livestock buildings are one of the most effective metrics to decrease energy requirements.This study was carried out to determine the optimum in... Determining the optimum insulation thicknesses of external envelopes for livestock buildings are one of the most effective metrics to decrease energy requirements.This study was carried out to determine the optimum insulation thicknesses for livestock buildings in different climate zones,to examine the effects of insulation thickness and material(foam glass,mineral wool,expanded polystyrene,foamed polyurethane,foamed polyvinyl chloride,and expanded polyethylene)on life cycle total cost,life cycle savings,and payback period.The finishing pig houses and laying hen buildings with sandwich wall structures(color steel laminboard)in five typical cities were studied using the degree-days method with economic models.Optimal insulation thicknesses ranged from 0.05 m to 0.25 m and 0.02 m to 0.24 m in finishing pig houses and poultry buildings,respectively;the life cycle total costs ranged from 16.49 to 37.98$/m2 and 13.37 to 36.84$/m2;the life cycle savings ranged from 29.13 to 220.60$/m2 and 0 to 202.13$/m2;and the payback period ranged from 1.11 to 5.81 years and 1.19 to 20.76 years,respectively.Foamed polyurethane provided the highest life cycle savings,while foam glass had the lowest.In this research,the insulation thicknesses for the sandwich structure livestock buildings external envelopes are optimized,and the energy saving can be obtained by using proper insulation thickness in different regions.Furthermore,it can increase the knowledge about energy consumption in the livestock buildings and the results can be also a useful tool for farmers. 展开更多
关键词 livestock building insulation material optimum insulation thicknesses DEGREE-DAYS life cycle total cost life cycle saving payback period
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部