Abundant material with low cost was utilized to raise medium function of producing carpet turf by life rubbish. The results showed that the material used could strikingly raise water retentiveness and ventilating of ...Abundant material with low cost was utilized to raise medium function of producing carpet turf by life rubbish. The results showed that the material used could strikingly raise water retentiveness and ventilating of medium. Through the determination of the effect of each growth index of several turfgrass, emergence density, plant height, root growth and individual plant′s net primary production were all positively related to the material′s amount mixed, showing that the mixture of material could promote turfgrass growth, further proving that the material used raised medium function of producing carpet turf by life rubbish and made most use of life rubbish resources. It provided a scientific base is for application of environmental engineering by using life rubbish to produce carpet turf. So the study had both important theoretic meaning and applied value.展开更多
In some situations, the accelerated life test on environmental stress for electronic products is not easily implemented due to various restrictions, and thus engineers are lacking of data of the product life test. Con...In some situations, the accelerated life test on environmental stress for electronic products is not easily implemented due to various restrictions, and thus engineers are lacking of data of the product life test. Concerning this problem, environmental life of the printed circuit board(PCB) board is calculated by way of physics of failure. Influences of thermal cycle and vibration on PCB and its components are studied. Based on the analysis of force and stress between components and the PCB board in thermal cycle events and vibration events, four life computing models of pins and soldered dots are established. The miller damage ratio is used to calculate the accumulated damage of a pin or a soldered dot, and then the environment life of the PCB board can be determined by the first failed one. Finally, an example is used to illustrate the models and their calculations.展开更多
As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we asse...As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we assessed the environmental load during production based upon a life cycle assessment.Using GaBi 6.0 software,we analyzed the associated carbon sequestration during floor production,with the initial planting density serving as the disturbance factor in a modular analysis.The results indicated that the cutting and finishing steps have relatively intense,negative influences on the environment,whereas transportation,ripping,and trimming do not.Additionally,recycling biomass waste has the potential to reduce greenhouse gas emissions.When the initial planting density was 3.0×3.0 m,carbon sequestration was relatively high.Although the emissions of freshwater pollutants,volatile organic compounds,and fine particulate matter(matter with a 2.5-μm diameter) were comparatively high,the reduction of greenhouse gas emissions was still excellent at this planting density.展开更多
The paper has established an assessment system and a quantitative calculation method of the 'implicit' environmental impact including environmental impact indicator,resources consumption indicator and energy c...The paper has established an assessment system and a quantitative calculation method of the 'implicit' environmental impact including environmental impact indicator,resources consumption indicator and energy consumption indicator. The quantitative calculation of the environmental impact indicator is based on the life cycle assessment system and the evaluation software BEES. The paper identifies normalization reference values and weights for 12 categories of the environmental impact. It also analyzes the environmental impact indicator in life cycle stages,raw materials,transportation,manufacturing,utilization,and end of life. A university refectory project is studied. The result has shown that human health,global warming and acidification are the first three environmental impacts in 12 categories. The environmental impact indicator per m2 of this project is 18.448×10-2 standard human equivalent weight. Moreover,97.3% of the total environmental impact occurs at the raw material stage,in which the most severe environmental impact is cancerous health effect; the global warming is the main impact at the transportation and manufacturing stages; the indoor air quality impact is at the usage stage.展开更多
As an important human activity,the building industry has created comfortable space for living and work,and at the same time brought considerable pollution and huge consumption of energy and recourses. From 1990s after...As an important human activity,the building industry has created comfortable space for living and work,and at the same time brought considerable pollution and huge consumption of energy and recourses. From 1990s after the first building environmental assessment model-BREEAM was released in the UK,a number of assessment models were formulated as analytical and practical in methodology respectively. This paper aims to introduce a generic model of exergy assessment on environmental impact of building life cycle,taking into consideration of previous models and focusing on natural environment as well as building life cycle,and three environmental impacts will be analyzed,namely energy embodied exergy,resource chemical exergy and abatement exergy on energy consumption,resource consumption and pollutant discharge respectively. The model of exergy assessment on environmental impact of building life cycle thus formulated contains two sub-models,one from the aspect of building energy utilization,and the other from building materials use. Combining theories by ecologists such as Odum,building environmental sustainability modeling with exergy methodology is put forward with the index of exergy footprint of building environmental impacts.展开更多
The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made...The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made up of 3 parts including text-based learning materials, quizzes to review the content of the learning materials and CO<sub>2</sub> emission simulation, was designed and developed with the purpose of supporting environmental learning. Targeting a wide range of people, the operation period of this system was 1 month. Based on the results of questionnaire survey for users, it was evident that the quiz function and the simulation function of CO<sub>2</sub> emission contributed to the efficiency in environmental learning, and the format of the e-learning system was effective and helpful for environmental learning. Additionally, with the users’ awareness related to environmental conservation before and after using the system, significant changes in awareness were seen in areas such as behavioral intention, sense of urgency and sense of connection. Furthermore, as it was revealed that 62% of the total access numbers were from mobile devices, it was effective to prepare an interface optimized for mobile devices enabling users to use the system from their smartphones and tablet PCs.展开更多
Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessmen...Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario is conducted using SimaPro Ver. 8.1. The results of energy consumption and potential environmental impact of biochar-based bioenergy production system are compared with those of conventional coal-based system. Results show that biocbar land application consumes 4847.61 MJ per tonne dry feedstock more energy than conventional system, but reduces the GHG emissions by 68.19 kg CO2e per tonne of dry feed- stock in its life cycle. Biochar land application improves ecosystem quality by 18 %, reduces climate change by 15 %, and resource use by 13 % but may adversely impact on human health by increasing disability adjusted life years by 1.7 % if biomass availability is low to medium. Replacing fossil fuel with woody biomass has a positiveimpact on the environment, as one tonne of dry biomass feedstock when converted to biochar reduces up to 38 kg CO2e with biochar land application despite using more energy. These results will help understand a comprehensive picture of the new interventions in forestry businesses, which are promoting biochar-based bioenergy production.展开更多
LAQIAO is a tiny village in the karstic mountains of Libo. Its 96 Shui residents in their community of 20 households decided, in 2002,to take part in an environmental protection program. This was a welcome decision,...LAQIAO is a tiny village in the karstic mountains of Libo. Its 96 Shui residents in their community of 20 households decided, in 2002,to take part in an environmental protection program. This was a welcome decision, in view of the ecological significance of the swamps and karst forests in the Maolan Nature Reserve of Libo.展开更多
文摘Abundant material with low cost was utilized to raise medium function of producing carpet turf by life rubbish. The results showed that the material used could strikingly raise water retentiveness and ventilating of medium. Through the determination of the effect of each growth index of several turfgrass, emergence density, plant height, root growth and individual plant′s net primary production were all positively related to the material′s amount mixed, showing that the mixture of material could promote turfgrass growth, further proving that the material used raised medium function of producing carpet turf by life rubbish and made most use of life rubbish resources. It provided a scientific base is for application of environmental engineering by using life rubbish to produce carpet turf. So the study had both important theoretic meaning and applied value.
文摘In some situations, the accelerated life test on environmental stress for electronic products is not easily implemented due to various restrictions, and thus engineers are lacking of data of the product life test. Concerning this problem, environmental life of the printed circuit board(PCB) board is calculated by way of physics of failure. Influences of thermal cycle and vibration on PCB and its components are studied. Based on the analysis of force and stress between components and the PCB board in thermal cycle events and vibration events, four life computing models of pins and soldered dots are established. The miller damage ratio is used to calculate the accumulated damage of a pin or a soldered dot, and then the environment life of the PCB board can be determined by the first failed one. Finally, an example is used to illustrate the models and their calculations.
基金supported by the Science and Technology Support Project for the Twelfth Five-year Grant in China(Grant No.2015BAD14B05)
文摘As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we assessed the environmental load during production based upon a life cycle assessment.Using GaBi 6.0 software,we analyzed the associated carbon sequestration during floor production,with the initial planting density serving as the disturbance factor in a modular analysis.The results indicated that the cutting and finishing steps have relatively intense,negative influences on the environment,whereas transportation,ripping,and trimming do not.Additionally,recycling biomass waste has the potential to reduce greenhouse gas emissions.When the initial planting density was 3.0×3.0 m,carbon sequestration was relatively high.Although the emissions of freshwater pollutants,volatile organic compounds,and fine particulate matter(matter with a 2.5-μm diameter) were comparatively high,the reduction of greenhouse gas emissions was still excellent at this planting density.
基金supported by the Special Research Foundation of Doctoral Subjects in University of China (No.20050487017)
文摘The paper has established an assessment system and a quantitative calculation method of the 'implicit' environmental impact including environmental impact indicator,resources consumption indicator and energy consumption indicator. The quantitative calculation of the environmental impact indicator is based on the life cycle assessment system and the evaluation software BEES. The paper identifies normalization reference values and weights for 12 categories of the environmental impact. It also analyzes the environmental impact indicator in life cycle stages,raw materials,transportation,manufacturing,utilization,and end of life. A university refectory project is studied. The result has shown that human health,global warming and acidification are the first three environmental impacts in 12 categories. The environmental impact indicator per m2 of this project is 18.448×10-2 standard human equivalent weight. Moreover,97.3% of the total environmental impact occurs at the raw material stage,in which the most severe environmental impact is cancerous health effect; the global warming is the main impact at the transportation and manufacturing stages; the indoor air quality impact is at the usage stage.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2006BAJ01A13-2,2006BAJ02A09) supported by the National Key Technologies R&D Program
文摘As an important human activity,the building industry has created comfortable space for living and work,and at the same time brought considerable pollution and huge consumption of energy and recourses. From 1990s after the first building environmental assessment model-BREEAM was released in the UK,a number of assessment models were formulated as analytical and practical in methodology respectively. This paper aims to introduce a generic model of exergy assessment on environmental impact of building life cycle,taking into consideration of previous models and focusing on natural environment as well as building life cycle,and three environmental impacts will be analyzed,namely energy embodied exergy,resource chemical exergy and abatement exergy on energy consumption,resource consumption and pollutant discharge respectively. The model of exergy assessment on environmental impact of building life cycle thus formulated contains two sub-models,one from the aspect of building energy utilization,and the other from building materials use. Combining theories by ecologists such as Odum,building environmental sustainability modeling with exergy methodology is put forward with the index of exergy footprint of building environmental impacts.
文摘The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made up of 3 parts including text-based learning materials, quizzes to review the content of the learning materials and CO<sub>2</sub> emission simulation, was designed and developed with the purpose of supporting environmental learning. Targeting a wide range of people, the operation period of this system was 1 month. Based on the results of questionnaire survey for users, it was evident that the quiz function and the simulation function of CO<sub>2</sub> emission contributed to the efficiency in environmental learning, and the format of the e-learning system was effective and helpful for environmental learning. Additionally, with the users’ awareness related to environmental conservation before and after using the system, significant changes in awareness were seen in areas such as behavioral intention, sense of urgency and sense of connection. Furthermore, as it was revealed that 62% of the total access numbers were from mobile devices, it was effective to prepare an interface optimized for mobile devices enabling users to use the system from their smartphones and tablet PCs.
基金supported by Natural Sciences and Engineering Research Council of Canada through Industrial Postgraduate Scholarships(NSERC-IPS)Ontario Graduate Scholarship (OGS)Ontario Power Generation(OPG)
文摘Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario is conducted using SimaPro Ver. 8.1. The results of energy consumption and potential environmental impact of biochar-based bioenergy production system are compared with those of conventional coal-based system. Results show that biocbar land application consumes 4847.61 MJ per tonne dry feedstock more energy than conventional system, but reduces the GHG emissions by 68.19 kg CO2e per tonne of dry feed- stock in its life cycle. Biochar land application improves ecosystem quality by 18 %, reduces climate change by 15 %, and resource use by 13 % but may adversely impact on human health by increasing disability adjusted life years by 1.7 % if biomass availability is low to medium. Replacing fossil fuel with woody biomass has a positiveimpact on the environment, as one tonne of dry biomass feedstock when converted to biochar reduces up to 38 kg CO2e with biochar land application despite using more energy. These results will help understand a comprehensive picture of the new interventions in forestry businesses, which are promoting biochar-based bioenergy production.
文摘LAQIAO is a tiny village in the karstic mountains of Libo. Its 96 Shui residents in their community of 20 households decided, in 2002,to take part in an environmental protection program. This was a welcome decision, in view of the ecological significance of the swamps and karst forests in the Maolan Nature Reserve of Libo.