期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Thermal-Mechanical Fatigue Behavior and Life Analysis of Cast Ni-base Superalloy K417 被引量:2
1
作者 HuiZHANG YuechenWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期176-180,共5页
In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 4... In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 400-850℃. Both in-phase and out-of-phase TMF specimens exhibited cyclic hardening followed by cyclic softening at the minimum temperature. Besides, they cyclically hardened in the early stage of life followed by cyclic softening at the maximum temperature. OP TMF life was longer than that of IP TMF. Various damage mechanisms operating in different controlled strain ranges and phasing were discussed. A few life prediction methods for isothermal fatigue were used to handle TMF fatigue and their applicability to superalloy K417 was evaluated. The SEM analysis of the fracture surface showed that transgranular fracture was the principal cracking mode for both IP and OP TMF. Oxidation was the main damage mechanism in causing shorter fatigue life for IP TMF compared with OP TMF. 展开更多
关键词 Thermal-Mechanical fatigue life analysis superalloy
下载PDF
A Building Information Modeling-Life Cycle Cost Analysis Integrated Model to Enhance Decisions Related to the Selection of Construction Methods at the Conceptual Design Stage of Buildings
2
作者 Nkechi McNeil-Ayuk Ahmad Jrade 《Open Journal of Civil Engineering》 2024年第3期277-304,共28页
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ... Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design. 展开更多
关键词 life Cycle Cost analysis (LCCA) Building Information Modeling (BIM) Cost Decision Modular Construction and 3D Concrete Printing
下载PDF
Comparative analysis of perpetual pavement structures based on pavement performance and life cycle cost 被引量:3
3
作者 朱玉琴 倪富健 顾兴宇 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期84-87,共4页
Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and de... Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site. 展开更多
关键词 perpetual pavement rich binder layer pavementperformance life cycle cost analysis
下载PDF
Impact of Different Parameters on Life Cycle Analysis, Embodied Energy and Environmental Emissions for Wind Turbine System
4
作者 Nazia Binte Munir Ziaul Huque Raghava R. Kommalapati 《Journal of Environmental Protection》 2016年第7期1005-1015,共11页
Due to the rapid depletion of fossil fuel reserves and increasing concern for climate change as a result of greenhouse gas effect, every country is looking for ways to develop eco-friendly renewable energy sources. Wi... Due to the rapid depletion of fossil fuel reserves and increasing concern for climate change as a result of greenhouse gas effect, every country is looking for ways to develop eco-friendly renewable energy sources. Wind energy has become a good option due to its comparative economic advantages and environment friendly aspects. But there is always an ongoing debate if wind energy is as green as it seems to appear. Wind turbines once installed do not produce any greenhouse gases during operation, but it can and may produce significant emissions during manufacture, transport, installation and disposal stages. To determine the exact amount of emissions, it is necessary to consider all the stages for a wind turbine from manufacture to disposal. Life Cycle Analysis (LCA) is a technique that determines the energy consumption, emission of greenhouse gases and other environmental impacts of a product or system throughout the life cycle stages. The various approaches that have been used in the literature for the LCA of wind turbines have many discrepancies among the results, the main reason(s) being different investigators used different parameters and boundary conditions, and thus comparisons are difficult. In this paper, the influence of different parameters such as turbine size, technology (geared or gearbox less), recycling, medium of transport, different locations, orientation of the blade (horizontal or vertical), blade material, positioning of wind turbine (land, coastal or offshore), etc. on greenhouse gas emissions and embodied energy is studied using the available data from exhaustive search of literature. This provides tools to find better solutions for power production in an environmental friendly manner by selecting a proper blade orientation technique, with suitable blade material, technology, recycling techniques and suitable location. 展开更多
关键词 Embodied Energy Energy Payback Time EMISSIONS life Cycle analysis Wind Energy
下载PDF
Importance of Life Cycle Analysis of the Printed Circuit Board Computer
5
作者 Miguel Aguilar Cortes Martha L. Domínguez Patiño +1 位作者 Nadia Lara Ruíz Luz E. Marín Vaca 《Open Journal of Applied Sciences》 2016年第1期1-6,共6页
It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontro... It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact. 展开更多
关键词 analysis of Cycle of life Environmental Impact Electrical and Electronic Equipment End of life Printed Circuit Card
下载PDF
A review on plasma-based CO_(2) utilization:process considerations in the development of sustainable chemical production
6
作者 Sirui LI Giulia De FELICE +2 位作者 Simona EICHKORN Tao SHAO Fausto GALLUCCI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期1-16,共16页
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un... Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process. 展开更多
关键词 non-thermal plasma carbon capture and utilization process integration process intensification techno-economic analysis life cycle analysis
下载PDF
Substitution of Aggregates in Concrete and Mortar with Coltan Mining Waste: Mechanical, Environmental, and Economic Impact Case Study
7
作者 Alinabiwe Nyamuhanga Ally Élodie Ruffine Zang +5 位作者 Masika Muhiwa Grâce Manjia Marcelline Blanche Ursula Joyce Merveilles Pettang Nana Ngapgue François Bella Nabil Chrispin Pettang 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期139-163,共25页
The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechani... The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete;reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint. 展开更多
关键词 AGGREGATE Coltan Mining Waste CONCRETE MORTAR Mechanical Strength life Cycle analysis
下载PDF
Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario,Canada 被引量:2
8
作者 Krish Homagain Chander Shahi +1 位作者 Nancy Luckai Mahadev Sharma 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第4期799-809,共11页
Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessmen... Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario is conducted using SimaPro Ver. 8.1. The results of energy consumption and potential environmental impact of biochar-based bioenergy production system are compared with those of conventional coal-based system. Results show that biocbar land application consumes 4847.61 MJ per tonne dry feedstock more energy than conventional system, but reduces the GHG emissions by 68.19 kg CO2e per tonne of dry feed- stock in its life cycle. Biochar land application improves ecosystem quality by 18 %, reduces climate change by 15 %, and resource use by 13 % but may adversely impact on human health by increasing disability adjusted life years by 1.7 % if biomass availability is low to medium. Replacing fossil fuel with woody biomass has a positiveimpact on the environment, as one tonne of dry biomass feedstock when converted to biochar reduces up to 38 kg CO2e with biochar land application despite using more energy. These results will help understand a comprehensive picture of the new interventions in forestry businesses, which are promoting biochar-based bioenergy production. 展开更多
关键词 Woody biomass Carbon sequestration Environmental impact assessment Greenhouse gasemissions life cycle analysis Soil amendment
下载PDF
Life Cycle Assessment of Recycling High-Density Polyethylene Plastic Waste 被引量:2
9
作者 Neeti Gandhi Nicholas Farfaras +1 位作者 Nien-Hwa Linda Wang Wan-Ting Chen 《Journal of Renewable Materials》 SCIE EI 2021年第8期1463-1483,共21页
Increasing production and use of various novel plastics products,a low recycling rate,and lack of effective recycling/disposal methods have resulted in an exponential growth in plastic waste accumulation in landfills ... Increasing production and use of various novel plastics products,a low recycling rate,and lack of effective recycling/disposal methods have resulted in an exponential growth in plastic waste accumulation in landfills and in the environment.To better understand the effects of plastic waste,Life Cycle Analysis(LCA)was done to compare the effects of various production and disposal methods.LCA shows the specific effects of the cradle-to-grave or cradle-to-cradle scenarios for landfill,incineration,and mechanical recycling.The analysis clearly indicates that increasing recycling of plastics can significantly save energy and eliminate harmful emissions of various carcinogens and GHGs into the environment.As recycling increases,the need for virgin-plastic production can be greatly reduced.Furthermore,the results of this study may help improve current mechanical recycling processes as well as potential future recycling methods,such as chemical recycling.Concerns about the current recycling/disposal methods for plastics have brought increasing attention to the waste accumulation problem.However,with the current COVID-19 pandemic,plastic accumulation is expected to increase significantly in the near future.A better understanding of the quantitative effects of the various disposal methods can help guide policies and future research toward effective solutions of the plastic waste problem. 展开更多
关键词 life Cycle analysis(LCA) mechanical recycling microplastic chemical recycling plastic policy
下载PDF
Economic Analysis of Energy-efficient Buildings in China
10
作者 胡昊 杨志明 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期673-679,共7页
Applying energy-saving measures in residential buildings is usually constrained by the increase of initial investment. "However, if it is analyzed from the view of energy cost and life-cycle cost, the energy-saving b... Applying energy-saving measures in residential buildings is usually constrained by the increase of initial investment. "However, if it is analyzed from the view of energy cost and life-cycle cost, the energy-saving benefit can offset ~he increase of initial investment. An analysis method based on life-cycle concept was developed to calcu- late the energy cost of residential building flats. Several uncertain factors were included into the model, making it more accurate to reflect practical situation. The model was solved using the software DeST and applied to one resi- dential building project in Shanghai. The case study shows that the initial investment (cost) is paid back during the operational phase through less consumption of energy. It further indicates that the investment recovery period is between 10 and 19 years which are acceptable to households and developers in China. 展开更多
关键词 ENERGY-SAVING energy cost life cycle analysis energy simulation
下载PDF
Development of a Disaggregated Hybrid Model for Life Cycle Assessment and De-manufacturing
11
作者 Spivak Alexander Matthew Franchetti 《Journal of Environmental Science and Engineering(B)》 2012年第7期901-917,共17页
The de-manufacturing stage is an overlooked component of most current LCA (life cycle assessment) methodologies. Most of the current LCA techniques do not fully account for the usage of the product and end of life a... The de-manufacturing stage is an overlooked component of most current LCA (life cycle assessment) methodologies. Most of the current LCA techniques do not fully account for the usage of the product and end of life aspects. This paper introduces a comprehensive methodology that takes strong consideration of the inventory costs of use and end of life of the functional unit by combining manufacturing and de-manufacturing into the centerpiece of the hybrid analysis. In order to obtain this goal, a new disaggregated model was developed by enhancing current LCA hybrid methods related to life cycle inventory compilations. The new methodology is also compared to existing methodologies. 展开更多
关键词 Disaggregated hybrid hybrid life cycle analysis life cycle analysis LCA life cycle assessment).
下载PDF
Sustainable Design of Turbofan Engine: A Computer-Aided Design and Finite Element Analysis
12
作者 Nand K. Jha 《Journal of Mechanics Engineering and Automation》 2018年第4期156-178,共23页
A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on s... A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine. 展开更多
关键词 Sustainable design TURBOFAN life cycle analysis (LCA) Cost calculation energy calculation CAD FE analysis.
下载PDF
Carbon emissions from buildings based on a life cycle analysis:carbon reduction measures and effects of green building standards in China
13
作者 Zhenwei Guo Qingqin Wang +1 位作者 Na Zhao Ruiye Dai 《Low-carbon Materials and Green Construction》 2023年第1期100-111,共12页
Carbon emissions from buildings account for approximately half of China’s total social carbon emissions.Focusing only on the carbon emissions of building operation tends to neglect the carbon emissions of other relat... Carbon emissions from buildings account for approximately half of China’s total social carbon emissions.Focusing only on the carbon emissions of building operation tends to neglect the carbon emissions of other related parts of the building sector,thus slowing down the progress of carbon peaking in the building sector.By applying life-cycle analysis to calculate carbon emissions throughout the building’s life cycle,the performance of carbon emissions at each stage of building materials,construction,operation and end-of-life demolition can be identified,so that carbon reduction strategies in building design can be selected..This paper constructed a method for calculating the carbon emissions of green buildings in whole-building life cycle,and conducted a summary analysis of the carbon emissions of 33 projects that were awarded green building certification.The study found that the Chinese Assessment Standard for Green Buildings has a significant effect on reducing the carbon emissions of buildings in whole-building life cycle.Compared with the current average operational carbon emissions of buildings in China,the carbon intensity of green public buildings is 41.43%lower under this standard and the carbon intensity of green residential buildings is 13.99%lower.A carbon correlation analysis of the provisions of the current Chinese Assessment Standard for Green Buildings was conducted,comparing the changes in the carbon intensity of buildings before and after the revision of the standards.The study concluded that the new version of the standards has a greater impact on public buildings than residential buildings,the requirement of carbon emission reduction in the production stage of building materials is strengthened in terms of carbon emission during the whole-building life cycle.This study addresses the current problem of unclear carbon emission reduction effect of green buildings. 展开更多
关键词 life cycle analysis Building carbon emission Assessment standard for green buildings Carbon correlation
原文传递
Carbon and Water Footprint Evaluation of 120Wp Rural Household Photovoltaic System: Case Study
14
作者 Alberto Tama Diego Vicente 《Smart Grid and Renewable Energy》 CAS 2023年第3期31-59,共29页
This study uses the Life Cycle Analysis (LCA) to evaluate the magnitude of the environmental impact, in terms of global warming potential, and water footprint throughout the 20 years of useful life of a rural electric... This study uses the Life Cycle Analysis (LCA) to evaluate the magnitude of the environmental impact, in terms of global warming potential, and water footprint throughout the 20 years of useful life of a rural electrical energy concession comprised of 120Wp Households photovoltaic systems (HPS) in the isolated communities of San Martin, in the Peruvian Amazon region. On the other hand, due to the particular conditions of the system (installation, operation, maintenance, monthly tariff collection), it is necessary to know its real impact and sustainability;not only through the aforementioned environmental impact indicators, but also by energy intensity values required by the system throughout its life cycle. Therefore, this paper used the Cumulative energy demand (CED) method to determine the amount of energy taken from natural resources for each process involved in the LCA and calculated with this, i.e., the Energy Payback Time (EPBT) of the whole system. Likewise, the HPS has been environmentally compared to other case studies and the Peruvian Energy Mix, revealing a lower impact in the latter case and results within the range for stand-alone systems. Besides, the HPS shows a strong relation between energy production and O&M condition. Additionally, this study allows a further promotion of the use of this type of system in isolated areas, as well as the diversification of electricity generation in Peru. 展开更多
关键词 life Cycle analysis Carbon Footprint Water Footprint Solar Home System life Cycle Inventory
下载PDF
Temporal Trend in Lung Cancer Burden Attributed to Ambient Fine Particulate Matter in Guangzhou, China 被引量:8
15
作者 LIAO Yu XU Lin +1 位作者 LIN Xiao HAO Yuan Tao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2017年第10期708-717,共10页
Objective To estimate the lung cancer burden that may be attributable to ambient fine particulate matter (PM2.5) pollution in Guangzhou city in China from 2005 to 2013. Methods The data regarding PM2.5 exposure were... Objective To estimate the lung cancer burden that may be attributable to ambient fine particulate matter (PM2.5) pollution in Guangzhou city in China from 2005 to 2013. Methods The data regarding PM2.5 exposure were obtained from the &#39;Ambient air pollution exposure estimation for the Global Burden of Disease 2013' dataset at 0.1° ×0.1° spatial resolution. Disability-adjusted life years (DALYs) were estimated based on the information of mortality and incidence of lung cancer. Comparative risk analysis and integrated exposure-response function were used to estimate attributed disease burden. Results The population-weighted average concentration of PM2.5 was increased by 34.6% between 1990 and 2013, from 38.37 μg/m3 to 51.31 μg/m^3. The lung cancer DALYs in both men and women were increased by 36.2% from 2005 to 2013. The PM2.5 attributed lung cancer DALYs increased from 12105.0 (8181.0 for males and 3924.0 for females) in 2005 to 16489.3 (11291.7 for males and 5197.6 for females) in 2013. An average of 23.1% lung cancer burden was attributable to PM2.5 pollution in 2013. Conclusion PM2.5 has caused serious but under-appreciated public health burden in Guangzhou and the trend deteriorates. Effective strategies are needed to tackle this major public health problem. 展开更多
关键词 PM2.5 Air pollution Attributable disease burden Lung cancer Disability-adjusted life year Comparative risk analysis
下载PDF
Development and application of a life cycle energy consumption and CO2emissions analysis model for high-speed railway transport in China
16
作者 WANG Yan-Zhe ZHOU Sheng OU Xun-Min 《Advances in Climate Change Research》 SCIE CSCD 2021年第2期270-280,共11页
China's high-speed railway(HSR)is booming recently,the HSR's performance of energy conservation and carbon reduction has attractedmuch attention.This study developed a new life cycle model of energy consumptio... China's high-speed railway(HSR)is booming recently,the HSR's performance of energy conservation and carbon reduction has attractedmuch attention.This study developed a new life cycle model of energy consumption and greenhouse gas(GHG)emissions on China's HSR bylife cycle analysis(LCA),covering the stages of infrastructure,HSR train,and operation,based on the TLCAM(Tsinghua-LCA Model).A caseof the BeijingeShanghai HSR has been studied to show that the full life cycle energy consumption and GHG emissions of HSR transportationare 0.4 MJ km1per capita and 0.04 kg CO2ekm1per capita,respectively,which are far less than aviation,gasoline vehicles,diesel vehicles,electric vehicles and public vehicles.With the cleaner power structure and the progress of HSR train technology,the energy consumption andcarbon emissions of HSR in 2020 could be reduced by 20%compared to 2015.This study indicates that electricity generation mix structure andfull load rate are important factors influencing the life-cycle energy consumption and GHG emissions of HSR transportation.It is recommendedto improve the coverage of HSR network,accelerate train upgrades,improve the full load rate of HSR trains,and promote the low-carbondevelopment of electricity supply to strengthen and realize the low-carbon advantage of HSR transport mode in China.HSR transportationcan be used to achieve the low carbon transformation of China's transportation sector and improve oil supply safety situation. 展开更多
关键词 High-speed railway transport life cycle analysis Energy consumption Greenhouse gas emissions China
原文传递
Stainless steel and sustainability
17
作者 Pascal PAYET-GASPARD 《Baosteel Technical Research》 CAS 2010年第S1期75-,共1页
The paper focus on the life cycle analysis of stainless steels.It describes the system boundaries and gives an evaluation of the CO_2 emissions of Stainless Steels from cradle to gate.It gives as well an evaluation of... The paper focus on the life cycle analysis of stainless steels.It describes the system boundaries and gives an evaluation of the CO_2 emissions of Stainless Steels from cradle to gate.It gives as well an evaluation of the recycling rates of stainless steels according to the market applications and an evaluation of the overall cycle of manufacturing and scraps in 2005 on a world wide basis.It concludes with a presentation of some remarkable application focusing on green energy and future growth markets. 展开更多
关键词 stainless steels CO_2 emissions SUSTAINABILITY life cycle analysis life cycle costing
下载PDF
Life cycle analysis of palm kernel shell gasification for supplying heat to an asphalt mixing plant
18
作者 Sunu Herwi Pranolo Prabang Setyono Muhammad Akvis Fauzi 《Waste Disposal and Sustainable Energy》 2020年第1期55-63,共9页
The Government of the Republic of Indonesia states that the thermal energy for hot-mixed asphalt production shall be supplied by the direct combustion of fossil fuels in the form of diesel oil,natural gas,or fuel gas ... The Government of the Republic of Indonesia states that the thermal energy for hot-mixed asphalt production shall be supplied by the direct combustion of fossil fuels in the form of diesel oil,natural gas,or fuel gas from coal gasification which may generate GHG emission.Biomasses are able to substitute the fossil fuels through gasification technology.Gasification converts the biomass using limited air into gaseous fuel containing mainly CO and H_(2) that are subsequently combusted to produce heat,carbon dioxide,and water.It is obvious that the CO_(2) is then absorbed by the plants for photosynthesis,main-taining a balanced closed cycle.This study examines the level of global warming potential of this system for supplying heat based on the openLCA v1.9 software.The analysis used a gate-to-gate approach to evaluate scenarios of shell gasification to produce 1 metric tonne of hot-mixed asphalt.The scope covers raw material supply and transportation,palm kernel shell gasification,and products.The evaluation concludes that gasification could potentially reduce CO_(2) emissions.Environmental impact analysis and interpretation of the results using the openLCA database of Traci 2.1 recommend that greater CO_(2) emis-sion reduction is possible using palm kernel shell gasification,not only for supplying heat but also for electricity generation to operate all electrical equipments. 展开更多
关键词 Global warming GASIFICATION Palm kernel shell life cycle analysis Hot-mixed asphalt
原文传递
Estimating life-cycle energy payback ratio of overhead transmission line toward low carbon development 被引量:5
19
作者 Xiaoming DONG Chongqing KANG +4 位作者 Ning ZHANG Huaguang YAN Junxia MENG Xinsheng NIU Xin TIAN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第1期123-130,共8页
The energy conservation plays an important role for low carbon development.In order to evaluate the energy conservation in the full life-cycle,a scheme to estimate the energy consumption,or alternatively the energy pa... The energy conservation plays an important role for low carbon development.In order to evaluate the energy conservation in the full life-cycle,a scheme to estimate the energy consumption,or alternatively the energy pay,in constructing an overhead transmission line is proposed in this paper.The analysis of a typical projection is given for demonstration.With new additional overhead transmission lines,the energy consumption,known as the power loss in power network,is expected to be decline,which is defined in this paper as the energy payback.In order to estimate this kind of contribution,the scheme that consisted of load forecast,production simulation for generating systems,load flow simulation and power loss calculation has been proposed.Case studies,based on the IEEE 24-bus test system,are given to demonstrate the efficacy of the schemes.Moreover,several presumptive scenarios are deployed and analysed with the presented schemes for comparison. 展开更多
关键词 Power system operation Power system planning Power system simulation Power transmission life cycle analysis
原文传递
Economic Analysis of using Above Ground Gas Storage Devices for Compressed Air Energy Storage System 被引量:4
20
作者 LIU Jinchao ZHANG Xinjing +3 位作者 XU Yujie CHEN Zongyan CHEN Haisheng TAN Chunqing 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第6期535-543,共9页
Above ground gas storage devices for compressed air energy storage(CAES) have three types:air storage tanks,gas cylinders,and gas storage pipelines.A cost model of these gas storage devices is established on the basis... Above ground gas storage devices for compressed air energy storage(CAES) have three types:air storage tanks,gas cylinders,and gas storage pipelines.A cost model of these gas storage devices is established on the basis of whole life cycle cost(LCC) analysis.The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number.The LCCs of the three types are comprehensively analyzed and compared.The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types.This study may serve as a reference for designing large-scale CAES systems. 展开更多
关键词 above ground gas storage device economic analysis life cycle cost analysis
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部