期刊文献+
共找到16,392篇文章
< 1 2 250 >
每页显示 20 50 100
Growth of RB Population in the Conversion Phase of Chlamydia Life Cycle
1
作者 Frederic Y.M.Wan 《Communications on Applied Mathematics and Computation》 EI 2024年第1期90-112,共23页
Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infec... Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infection(hpi),spanning nearly half way through the development cycle.With data collected every 4 hpi,conversion to the elementary body(EB)form begins abruptly at a rapid rate sometime around 24 hpi.By modeling proliferation and conversion as simple birth and death processes,it has been shown that the optimal strategy for maximizing the total(mean)EB population at host cell lysis time is a bang-bang control qualitatively replicating the observed conversion activities.However,the simple birth and death model for the RB proliferation and conversion to EB deviates in a significant way from the available data on the evolution of the RB population after the onset of RB-to-EB conversion.By working with a more refined model that takes into account a small size threshold eligibility requirement for conversion noted in the available data,we succeed in removing the deficiency of the previous models on the evolution of the RB population without affecting the optimal bang-bang conversion strategy. 展开更多
关键词 CHLAMYDIA life cycle Optimal control Maximal infectious spread Specie competitive survival
下载PDF
Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level
2
作者 Andrea Lulovicova Stephane Bouissou 《Geography and Sustainability》 CSCD 2024年第2期251-264,共14页
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s... Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies. 展开更多
关键词 Environmental analysis Territorial life cycle assessment Prospective scenario Agri-food planning Local food system
下载PDF
Crystalline and amorphous metal sulfide composite electrode materials with long cycle life:Preparation and performance of hybrid capacitors
3
作者 DING Ning WANG Siyu +4 位作者 YU Shihua XU Pengcheng HAN Dandan SHI Dexin ZHANG Chao 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第9期1784-1794,共11页
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz... Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities. 展开更多
关键词 crystalline@amorphous heterostructure NiCo2S4@MoS2 hybrid supercapacitor defect design long cycle life
下载PDF
A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis
4
作者 Dounmene Tadida Lhami Arielle Wafula Gerald Nalume Youwene Gilbert 《Open Journal of Polymer Chemistry》 2024年第3期113-145,共33页
Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the producti... Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions. 展开更多
关键词 PLASTICS Thermal Recycling Carbon Dioxide Emissions life cycle Evaluation PYROLYSIS
下载PDF
A Building Information Modeling-Life Cycle Cost Analysis Integrated Model to Enhance Decisions Related to the Selection of Construction Methods at the Conceptual Design Stage of Buildings
5
作者 Nkechi McNeil-Ayuk Ahmad Jrade 《Open Journal of Civil Engineering》 2024年第3期277-304,共28页
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ... Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design. 展开更多
关键词 life cycle Cost Analysis (lcCA) Building Information Modeling (BIM) Cost Decision Modular Construction and 3D Concrete Printing
下载PDF
计及LCA碳排放的源荷双侧合作博弈调度研究 被引量:1
6
作者 朱永胜 张世博 +3 位作者 徐其迎 库永恒 赵强松 史志鹏 《电力系统保护与控制》 EI CSCD 北大核心 2024年第2期48-58,共11页
为实现新型电力系统的低碳经济目标,提出一种计及生命周期评价(lifecycleassessment, LCA)的源荷双侧合作博弈优化调度模型。首先,考虑灵活可调度的柔性负荷,构建含热电联产机组、燃气锅炉、电转气等设备的源荷双侧合作运行框架。然后,... 为实现新型电力系统的低碳经济目标,提出一种计及生命周期评价(lifecycleassessment, LCA)的源荷双侧合作博弈优化调度模型。首先,考虑灵活可调度的柔性负荷,构建含热电联产机组、燃气锅炉、电转气等设备的源荷双侧合作运行框架。然后,运用LCA方法分析源荷双侧中不同能源链的温室气体排放,并结合碳交易机制,建立碳交易成本计算模型。最后,基于合作博弈策略,建立以源荷合作联盟总成本最小为目标的源荷双侧协同运行优化模型,并利用改进的Shapley值法对成员合作收益进行分配。算例分析表明,所提模型有利于降低系统运行的总成本、减少系统碳排放量、提升可再生能源消纳量,有效促进系统低碳经济的发展。 展开更多
关键词 生命周期评价 柔性负荷 合作博弈 低碳经济 改进Shapley值
下载PDF
调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升
7
作者 程广玉 刘新伟 +2 位作者 刘硕 顾海涛 王可 《储能科学与技术》 CAS CSCD 北大核心 2024年第7期2171-2180,共10页
低温18650电池的循环寿命一直是限制其发展的关键因素,为了实现长循环寿命与低温性能的兼顾,通过调控电解液溶剂组分,对比分析了不同电解液对电池倍率性能、高低温放电、荷电保持率、循环寿命、EIS阻抗变化等的影响。结果表明,电解液组... 低温18650电池的循环寿命一直是限制其发展的关键因素,为了实现长循环寿命与低温性能的兼顾,通过调控电解液溶剂组分,对比分析了不同电解液对电池倍率性能、高低温放电、荷电保持率、循环寿命、EIS阻抗变化等的影响。结果表明,电解液组分设计对电池性能有显著影响,通过低熔点的长链线性羧酸酯部分取代碳酸酯及短链羧酸酯,既可以实现较好的低温性能,同时又提升了高温稳定性。EP、PP的比例对于LCO/C电极体系循环稳定性有重要作用。其中溶剂组分EC+EP+PP(质量比2∶5∶3)具备最佳的综合性能,研制的LTB电池5C放电容量保持率达99.86%,-40℃/1C放电容量保持率达92.84%,循环1000次后低温-40℃/1C放电仍然达到初始低温放电容量的90%,常温循环1500次容量保持率达85%,低温-10℃循环500次容量保持率82.4%。 展开更多
关键词 低温 18650电池 电解液 循环寿命 锂离子电池
下载PDF
基于LCA的不同设计寿命沥青路面能耗排放分析
8
作者 张磊 王鹏 +2 位作者 杨永志 邢超 谭忆秋 《材料导报》 EI CAS CSCD 北大核心 2024年第20期118-127,共10页
为研究不同设计寿命沥青路面的能耗排放特征,建立生命周期评价体系,量化分析柔性基层沥青路面、典型半刚性基层沥青路面、高掺量胶粉沥青路面的能耗排放。通过灵敏度分析确定主要能耗排放环节,并分析水泥类型、温拌技术、再生技术及运... 为研究不同设计寿命沥青路面的能耗排放特征,建立生命周期评价体系,量化分析柔性基层沥青路面、典型半刚性基层沥青路面、高掺量胶粉沥青路面的能耗排放。通过灵敏度分析确定主要能耗排放环节,并分析水泥类型、温拌技术、再生技术及运输效率对三种沥青路面能耗排放的影响规律。结果表明,典型半刚性基层沥青路面的能耗强度分别比柔性基层沥青路面及高掺量胶粉沥青路面能耗强度高25.29%、153.03%,全球变暖潜值总量比两种长寿命沥青路面分别高106.97%、107.99%;水泥生产、沥青生产、加热及运输环节为主要能耗排放环节;适用于水稳基层的通用水泥中,矿渣硅酸盐水泥能耗排放最低,替换掉普通硅酸盐水泥后典型半刚性基层沥青路面及高掺量胶粉沥青路面碳排放量分别下降了13.17%、12.43%;采用温拌技术后,柔性基层沥青路面碳排放量下降幅度最大,降低了2.41%,高掺量胶粉沥青路面能耗强度下降幅度最大,降低了3.71%;当RAP掺量达到30%时,三类沥青路面能耗强度分别下降20.64%、18.56%、15.26%,碳排放量分别下降6.92%、3.92%、4.39%;运输效率提升幅度与沥青路面的能耗排放减少率呈正相关,运输效率每提升10%,三类沥青路面能耗强度分别下降1.55%、1.63%、2.10%,碳排放量分别下降4.03%、3.26%、3.07%。 展开更多
关键词 道路工程 沥青路面 生命周期评价 能耗 碳排放 设计寿命
下载PDF
基于LCA的山岭隧道碳排放核算研究现状与展望
9
作者 宋战平 刘世昊 +3 位作者 孙引浩 成涛 张玉伟 王军保 《隧道建设(中英文)》 CSCD 北大核心 2024年第5期943-951,共9页
首先,梳理山岭隧道碳排放核算研究的进展并进行探讨,基于生命周期评价理论(life cycle assessment,LCA)与排放因子法,结合山岭隧道特点对其全生命周期内各阶段的碳排放来源进行分析,着重探讨施工与运营阶段的计算边界;其次,强调碳排放... 首先,梳理山岭隧道碳排放核算研究的进展并进行探讨,基于生命周期评价理论(life cycle assessment,LCA)与排放因子法,结合山岭隧道特点对其全生命周期内各阶段的碳排放来源进行分析,着重探讨施工与运营阶段的计算边界;其次,强调碳排放核算过程中清单分析涉及到的碳排放因子与活动数据的获取方式与应用条件;然后,对核算结果的应用、不确定分析与碳排放预测的相关研究成果进行整理;最后,指出当前山岭隧道碳排放研究中存在的问题,并展望其未来发展方向。 展开更多
关键词 山岭隧道 碳排放核算 生命周期评价 排放因子法
下载PDF
基于LCA方法的教育家具可持续设计策略研究
10
作者 傅晓云 黄宗拥 +1 位作者 吕巧真 王英豪 《包装工程》 CAS 北大核心 2024年第20期183-191,共9页
目的对家具领域的可持续设计方法进行梳理,并通过具体案例研究教育家具的可持续设计,提出设计策略,探讨该方法的可行性。方法采用ReCiPe 2016方法对一宿舍家具套装设计案例进行产品生命周期评价(LCA)评估,得出产品的环境热点问题,提出... 目的对家具领域的可持续设计方法进行梳理,并通过具体案例研究教育家具的可持续设计,提出设计策略,探讨该方法的可行性。方法采用ReCiPe 2016方法对一宿舍家具套装设计案例进行产品生命周期评价(LCA)评估,得出产品的环境热点问题,提出对应的设计策略,并通过环境、质量、经济、可实现性四个维度的专家评审对得出的设计策略进行可行性分析。结果评估结果表明钢材和实木多层板的制造及消耗是宿舍家具套装的环境热点。据此提出减少、优化钢材、木材用量;延长使用寿命;采取模块化或可替换部件的设计;建立回收与再制造系统;选用更环保板材;选用更环保的运输方式这六点设计策略,并对策略进行可行性评估。结论使用产品生命周期评价(LCA)这一量化方法,能够帮助设计者利用全生命周期视角,发现产品的环境热点问题、提出改进策略、对比各改进方案的优劣。本文通过具体案例对教育家具可持续设计进行研究,具有一定的实际意义,同时也可为教育家具行业提供可持续设计参考。 展开更多
关键词 lcA 产品生命周期评价 可持续设计 教育家具 宿舍家具
下载PDF
考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略
11
作者 孙毅 谷家训 +3 位作者 郑顺林 李熊 陆春光 刘炜 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期647-658,共12页
综合能源系统(IES)是当前能源转型低碳发展背景下实现“双碳”目标的关键,为了提高IES碳减排能力,需要充分利用需求侧负荷资源和传统储能设备等广义储能资源参与IES优化.首先,建立一种综合考虑可再生能源、能源转换设备、广义储能设备... 综合能源系统(IES)是当前能源转型低碳发展背景下实现“双碳”目标的关键,为了提高IES碳减排能力,需要充分利用需求侧负荷资源和传统储能设备等广义储能资源参与IES优化.首先,建立一种综合考虑可再生能源、能源转换设备、广义储能设备、能源市场交易的IES优化运行模型.然后,使用生命周期评估法(LCA)对IES中能源循环、设备循环的全过程进行碳排放量计算,并将碳排放成本纳入系统总成本.最后,利用仿真实验验证所提模型不仅有利于降低IES总调度成本,还能降低系统的碳排放量,有效促进IES的低碳发展. 展开更多
关键词 广义储能 碳排放 综合能源系统 优化运行 生命周期评估法
下载PDF
Tailoring Mg^(2+)Solvation Structure in a Facile All-Inorganic[Mg_(x)Li_(y)Cl2_(x+y)·nTHF]Complex Electrolyte for High Rate and Long Cycle-Life Mg Battery 被引量:2
12
作者 Haiyan Fan Xinxin Zhang +9 位作者 Yuxing Zhao Jianhua Xiao Hua Yuan Guang Wang Yitao Lin Jifang Zhang Ludi Pan Ting Pan Yang Liu Yuegang Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期152-158,共7页
A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulat... A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulation,density functional theory calculation,Raman spectroscopy,and nuclear magnetic resonance spectroscopy reveal that the formation of[Mg_(x)Li_(y)Cl_(2x+y)·nTHF]complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg^(2+),which significantly enhances its de-solvation kinetics.The MLCC electrolyte presents a stable electrochemical window up to 3.1 V(vs Mg/Mg^(2+))and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99%at current densities as high as 10 mA cm^(-2).Utilizing the MLCC electrolyte,a Mg/Mo_(6)S_(8) full cell can be cycled for over 10000 cycles with a superior capacity retention of 85 mA h g^(-1) under an ultrahigh rate of 50 C(1 C=128.8 mA g^(-1)).The facile synthesis of highperformance MLCC electrolyte provides a promising solution for future practical magnesium batteries. 展开更多
关键词 cycle life ELECTROLYTE Mg battery solvation structure
下载PDF
Design of Fine Life Cycle Prediction System for Failure of Medical Equipment 被引量:1
13
作者 Ma Haowei Cheng Xu Jing Yang 《Journal of Artificial Intelligence and Technology》 2023年第2期39-45,共7页
The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significan... The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significant amount of wasted time and resources.To properly predict the failure of medical equipment,a method for failure life cycle prediction of medical equipment was developed.The system is divided into four modules:the whole life cycle management module constructs the life cycle data set of medical devices from the three parts of the management in the early stage,the middle stage,and the later stage;the status detection module monitors the main operation data of the medical device components through the normal value of the relevant sensitive data in the whole life cycle management module;and the main function of the fault diagnosis module is based on the normal value of the relevant sensitive data in the whole life cycle management module.The inference machine diagnoses the operation data of the equipment;the fault prediction module constructs a fine prediction system based on the least square support vector machine algorithm and uses the AFS-ABC algorithm to optimize the model to obtain the optimal model with the regularized parameters and width parameters;the optimal model is then used to predict the failure of medical equipment.Comparative experiments are designed to determine whether or not the design system is effective.The results demonstrate that the suggested system accurately predicts the breakdown of ECG diagnostic equipment and incubators and has a high level of support and dependability.The design system has the minimum prediction error and the quickest program execution time compared to the comparison system.Hence,the design system is able to accurately predict the numerous causes and types of medical device failure. 展开更多
关键词 medical device FAILURE life cycle inference engine prediction model parameter optimization
下载PDF
Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
14
作者 Yuchen Yang Lin Ma +2 位作者 Jie Yu Zewen Zhao Pengfei You 《Journal of Renewable Materials》 SCIE EI 2023年第3期1153-1179,共27页
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe... The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results. 展开更多
关键词 life cycle assessment Organic Rankine cycle NANOREFRIGERANT total energy consumption energy payback time
下载PDF
Zr-doping stabilizes spinel LiMn_(2)O_(4)as a low cost long cycle life cathode for lithium ion batteries
15
作者 张祥功 吴伟 +5 位作者 周思思 黄飞 许诗浩 尹良 杨伟 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期554-559,共6页
The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side react... The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance. 展开更多
关键词 lithium battery CATHODE LiMn_(2)O_(4) cycle life
下载PDF
Carbon footprint accounting for cigar production processes: A life cycle assessment perspective
16
作者 Guanzhun Cao Xiaoyao Guo +8 位作者 Chuan Feng Tong Li Feng Cui Yuan Xu Shuo Yang Qingsong Wang Leping Chen Xueliang Yuan Guifang Chen 《Chinese Journal of Population,Resources and Environment》 2023年第4期231-238,共8页
Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in ... Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries. 展开更多
关键词 Cigar process life cycle assessment Carbon emissions Environmental impact
下载PDF
基于LCA的长江上游某内河港口工程碳排放估算与分析 被引量:1
17
作者 任建林 秦宇 +1 位作者 欧阳常悦 李卫青 《水运工程》 2024年第2期53-59,共7页
“十四五”期间“双碳”目标的提出,推动着我国基础设施建设向绿色低碳的方向发展,生命周期评价方法(LCA)作为一款全面的环境影响评价工具逐渐开始应用到我国建筑业。以生命周期评价理论为基础,选取长江上游某内河港口工程为研究对象,... “十四五”期间“双碳”目标的提出,推动着我国基础设施建设向绿色低碳的方向发展,生命周期评价方法(LCA)作为一款全面的环境影响评价工具逐渐开始应用到我国建筑业。以生命周期评价理论为基础,选取长江上游某内河港口工程为研究对象,将该港口工程全生命周期划分为施工阶段、运维阶段及退役阶段进行碳排放来源分析并估算碳排放。结果表明,该港口工程全生命周期碳排放为8.67万t CO_(2)-eq(当量),施工阶段、运维阶段、退役阶段分别占比39.4%、56.7%、3.9%,单位碳排放为95%置信区间为651.92~745.21 kg CO_(2)-eq/m^(2),中位数为698.14 kg CO_(2)-eq/m^(2),清单数据不确定性较小,港口工程碳排放敏感因素为混凝土和电力。碳排放评价结果总体较好,可作为后续制定碳减排政策的相关依据。 展开更多
关键词 生命周期评价 内河港口工程 碳排放 不确定性分析
下载PDF
Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China 被引量:1
18
作者 Suisui Zhang Jingying Li +4 位作者 Yan Nie Luyao Qiang Boyang Bai Zhiwei Peng Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期236-244,共9页
HFC-134a is a widely used environment-friendly refrigerant.At present,China is the largest producer of HFC-134a in the world.The production of HFC-134a in China mainly adopts the calcium carbide acetylene route.Howeve... HFC-134a is a widely used environment-friendly refrigerant.At present,China is the largest producer of HFC-134a in the world.The production of HFC-134a in China mainly adopts the calcium carbide acetylene route.However,the production route has high resource and energy consumption and large waste emission,and few of the studies addressed on the environmental performance of its production process.This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment(LCA)using the CML 2001 method.And uncertainty analysis by Monte-Carlo simulation was also carried out.The results showed that electricity had the most impact on the environment,followed by steam,hydrogen fluoride and chlorine,and the impact of direct CO_(2) emissions in calcium carbide production stage on the global warming effect also could not be ignored.Therefore,the clean energy(e.g.,wind,solar,biomass,and natural gas)was used to replace coal-based electricity and coal-fired steam in this study,showing considerable environmental benefits.At the same time,the use of advanced production technologies could also improve environmental benefits,and the environmental impact of the global warming category could be reduced by 4.1%via using CO_(2) capture and purification technology.The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars.For the production of HFC-134a,this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits. 展开更多
关键词 HFC-134A Calcium carbide life cycle assessment Environmental impact Carbon capture
下载PDF
Carbon emissions reduction potentiality for railroad transportation based on life cycle assessment
19
作者 Yintao Lu Tongtong Zhang +3 位作者 Shengming Qiu Xin Liu Xiaohua Yu Hong Yao 《High-Speed Railway》 2023年第3期195-203,共9页
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life... This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems. 展开更多
关键词 life cycle assessment High-speed-rail Transportation structure Intercity transportation Carbon emission reduction potentiality
下载PDF
基于LCA理论的汽车零部件包装箱“以塑代木”对比研究
20
作者 沈明辰 王晓 +2 位作者 殷旅江 张驰 王彦兆 《包装工程》 CAS 北大核心 2024年第17期234-240,共7页
目的旨在解决汽车零部件包装中一个长期存在的问题,即“以塑代木”还是“以木代塑”。通过评估聚丙烯可循环包装箱与铁木箱在整个生命周期中的碳排放量,探讨使用聚丙烯包装箱替代传统木箱的环保价值。方法研究采用生命周期评价(LCA)方... 目的旨在解决汽车零部件包装中一个长期存在的问题,即“以塑代木”还是“以木代塑”。通过评估聚丙烯可循环包装箱与铁木箱在整个生命周期中的碳排放量,探讨使用聚丙烯包装箱替代传统木箱的环保价值。方法研究采用生命周期评价(LCA)方法以铁木箱为例进行碳足迹研究,考虑从原材料获取、生产、使用到废弃处理等各个阶段的碳排放量。通过这种方法,可以更准确地评估包装箱在整个生命周期中的环保价值,并为未来的包装箱选择提供科学依据。结果研究发现,在整个生命周期中,聚丙烯可循环包装箱的碳排放量明显低于铁木箱。具体数据显示,铁木箱碳排放量约为571.265 kg,而聚丙烯包装箱约为铁木箱碳排放的四分之一。结论根据上述实验结果得出结论,聚丙烯可循环包装箱在减少碳排放方面具有显著效果,因此,在汽车零部件包装材料选择上,“以塑代木”是值得推广的。这一发现为包装行业提供了重要的参考,有助于推动更加可持续的包装解决方案。 展开更多
关键词 铁木箱 全生命周期 碳足迹 汽车零部件包装箱
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部