In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f...In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.展开更多
In recent years,probabilistic tracking methods have been becoming increasingly popular for solving the multi-target tracking problem in Space Situational Awareness(SSA).Bayesian frameworks have been used to describe t...In recent years,probabilistic tracking methods have been becoming increasingly popular for solving the multi-target tracking problem in Space Situational Awareness(SSA).Bayesian frameworks have been used to describe the objects’of interest states and cardinality as point processes.The inputs of the Bayesian framework filters are a probabilistic description of the scene at hand,the probability of clutter during the observation,the probability of detection of the objects,the probability of object survival and birth rates,and in the state update,the measurement uncertainty and process noise for the propagation.However,in the filter derivation,the assumptions of Poisson distributions of the object prior and the clutter model are made.Extracting the first-order moments of the full Bayesian framework leads to a so-called Probability Hypothesis Density(PHD)filter.The first moment extraction of the PHD filter process is extremely sensitive to both the input parameters and the measurements.The specifics of the SSA problem and its probabilistic description are illustrated in this paper and compared to the assumptions that the PHD filter is based on.As an example,this paper shows the response of a Cardinality only PHD filter(only the number of objects is estimated,not their corresponding states)to different input parameterizations.The very simple Cardinality only PHD filter is chosen in order to clearly show the sole effects of the model mismatch that might be blurred with state estimation effects,such as non-linearity in the dynamical model,in a full PHD filter implementation.The simulated multi-target tracking scenario entails the observation of attitude stable and unstable geostationary objects.展开更多
To improve the tracking accuracy of hypersonic sliding target in near space,the influence of target hypersonic movement on radar detection and tracking is analyzed,and an IMM tracking algorithm is proposed based on ra...To improve the tracking accuracy of hypersonic sliding target in near space,the influence of target hypersonic movement on radar detection and tracking is analyzed,and an IMM tracking algorithm is proposed based on radial velocity compensating and cancellation processing of high dynamic biases under the earth centered earth fixed(ECEF) coordinate.Based on the analysis of effect of target hypersonic movement,a measurement model is constructed to reduce the filter divergence which is caused by the model mismatch.The high dynamic biases due to the target hypersonic movement are approximately compensated through radial velocity estimation to achieve the hypersonic target tracking at low systematic biases in near space.The high dynamic biases are further eliminated by the cancellation processing of different radars,in which the track association problem can be solved when the dynamic biases are low.An IMM algorithm based on constant acceleration(CA),constant turning(CT) and Singer models is used to achieve the hypersonic sliding target tracking in near space.Simulation results show that the target tracking in near space can be achieved more effectively by using the proposed algorithm.展开更多
Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome t...Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.展开更多
For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents ...For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.展开更多
A space laser communication acquisition,pointing and tracking(APT)system based on the beacon laser is designed without prior information.And then,a new target scanning method and a pointing and tracking algorithm are ...A space laser communication acquisition,pointing and tracking(APT)system based on the beacon laser is designed without prior information.And then,a new target scanning method and a pointing and tracking algorithm are proposed.The target scanning mode is the round-trip triangular wave scanning,and it means that scanning track of the PAN-TILT platform follows the triangular wave repeatedly.For the pointing and tracking algorithm,the beacon laser is used as the auxiliary aiming light source.The position of the beacon laser in the viewfield of the complementary metal oxide semiconductor(CMOS)camera is calculated by the centroid algorithm.In order to realize the target tracking,the joint control method of the angle control and the angular velocity control is used.The simulation and experimental results show that the APT system can achieve full coverage scanning in the scanning area and capture the target in one scanning cycle successfully.After capturing the PAN-TILT platform,the pointing and tracking algorithm can track the PAN-TILT platform quickly and accurately,and the tracking accuracy is up to 0.22 mrad.展开更多
In addition to describing the social reality of Taiwan’s political and economic chaos, Taiwan’s films after the lifting of martial law also try to explore the ultimate significance of human existence, showing the co...In addition to describing the social reality of Taiwan’s political and economic chaos, Taiwan’s films after the lifting of martial law also try to explore the ultimate significance of human existence, showing the color of ontology. Under the influence of postmodern culture, Taiwan films adopt non-linear narrative methods such as fragmented, time countercurrent or psychological time, emphasizing people’s instant experience and expressing modern people’s anxiety and social absurdity. In addition, the film highlights the gridding and deformed space, so as to highlight the interpersonal alienation and survival dilemma of modern cities. Taiwan Residents films also reflect the impermanence of fate, the nothingness of existence, and the absurdity of society through the death of characters. It is also coupled with the existential view of “living to death” and “others are hell”.展开更多
John Njoroge hopes to be an astro naut when he grows up. The seven- year old Kenyan boy said that flying must be an exciting job. His influenee comes from watching movies and playing video games.
The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand...The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.展开更多
Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the per...Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.展开更多
Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TC...Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TCs underwent ET during 1979-2008. The warm-season (June through September) ETs account for 64% of all ET events with the most occurrence in September. The area 120°E-150°E and 20°N-40°N is the most favorable region for ET onsets in western North Pacific. The TCs experiencing ET at latitudes 30°N-40°N have the greatest intensity in contrast to those at other latitude bands. The distribution of ET onset locations shows obviously meridional migration in different seasons. A cyclone phase space (CPS) method was used to analyze the TC evolution during ET. Except for some cases of abnormal ET at relatively high latitudes,typical phase evolution paths-along which TC firstly showed thermal asymmetry and an upper-level cold core and then lost its low-level warm core-can be used to describe the main features of ET processes in western North Pacific. Some seasonal variations of ET evolution paths in CPS were also found at low latitudes south of 15°N,which suggests different ET onset mechanisms there. Further composite analysis concluded that warm-season ETs have generally two types of evolutions,but only one type in cold season (October through next May). The first type of warm-season ETs has less baroclinicity due to long distance between the TC and upper-level mid-latitude system. However,significant interactions between a mid-latitude upper-level trough and TC,which either approaches or is absorbed into the trough,and TC's relations with downstream and upstream upper-level jets,are the fingerprints for both a second type of warm-season ETs and almost all the cold-season ETs. For each type of ETs,detailed structural characteristics as well as precipitation distribution are illustrated by latitude.展开更多
Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This p...Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.展开更多
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion trackin...The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.展开更多
This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyap...This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyapunov direct method and dissipative theory. To eliminate the chattering phenomenon, an radial basis function (RBF) neural network is applied to replace the discontinuous part of the control signal. A novel on-line learning method of the weights and parameters of the RBF neural network established using Lyapunov function assures the stability of the system. It is proved that the proposed controller can guarantee that the L2 gain from disturbance to tracking error is lower than the given index y. Simulation results show that the control method is valid.展开更多
The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. ...The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.展开更多
A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space represe...A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space representation is formulated by local linearization. A parametric approach is applied by using the eigenstructure assignment theory and the model reference method. A feedback stabilizing controller and a feedforward compensation controller are built based on the approach. Then an optimization procedure is followed after that to obtain the desired requirement and characteristics. Simulation results are presented to show the effectiveness of the proposed method.展开更多
The location of a moving target based on signal fitting and sub-aperture tracking from an airborne multi-channel radar is dealt with.The proposed approach is applied in two steps:first,the ambiguous slant-range veloc...The location of a moving target based on signal fitting and sub-aperture tracking from an airborne multi-channel radar is dealt with.The proposed approach is applied in two steps:first,the ambiguous slant-range velocity is derived with a modified single-snapshot multiple direction of arrival estimation method,and second,the unambiguous slant-range velocity is found using a track-based criterion.The prominent advantage of the proposed approach is that the unambiguous slant-range velocity can be very large.Besides,the first stage is carried out at the determinate range-Doppler test cell by azimuth searching for fitting best to the moving target signal,therefore,the location performance would not be sacrificed in order to suppress clutter and/or interference.The effectiveness and efficiency of the proposed method are validated with a set of airborne experimental data.展开更多
基金supported by the National Natural Science Foundation of China(11372073,11072061)。
文摘In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.
文摘In recent years,probabilistic tracking methods have been becoming increasingly popular for solving the multi-target tracking problem in Space Situational Awareness(SSA).Bayesian frameworks have been used to describe the objects’of interest states and cardinality as point processes.The inputs of the Bayesian framework filters are a probabilistic description of the scene at hand,the probability of clutter during the observation,the probability of detection of the objects,the probability of object survival and birth rates,and in the state update,the measurement uncertainty and process noise for the propagation.However,in the filter derivation,the assumptions of Poisson distributions of the object prior and the clutter model are made.Extracting the first-order moments of the full Bayesian framework leads to a so-called Probability Hypothesis Density(PHD)filter.The first moment extraction of the PHD filter process is extremely sensitive to both the input parameters and the measurements.The specifics of the SSA problem and its probabilistic description are illustrated in this paper and compared to the assumptions that the PHD filter is based on.As an example,this paper shows the response of a Cardinality only PHD filter(only the number of objects is estimated,not their corresponding states)to different input parameterizations.The very simple Cardinality only PHD filter is chosen in order to clearly show the sole effects of the model mismatch that might be blurred with state estimation effects,such as non-linearity in the dynamical model,in a full PHD filter implementation.The simulated multi-target tracking scenario entails the observation of attitude stable and unstable geostationary objects.
文摘To improve the tracking accuracy of hypersonic sliding target in near space,the influence of target hypersonic movement on radar detection and tracking is analyzed,and an IMM tracking algorithm is proposed based on radial velocity compensating and cancellation processing of high dynamic biases under the earth centered earth fixed(ECEF) coordinate.Based on the analysis of effect of target hypersonic movement,a measurement model is constructed to reduce the filter divergence which is caused by the model mismatch.The high dynamic biases due to the target hypersonic movement are approximately compensated through radial velocity estimation to achieve the hypersonic target tracking at low systematic biases in near space.The high dynamic biases are further eliminated by the cancellation processing of different radars,in which the track association problem can be solved when the dynamic biases are low.An IMM algorithm based on constant acceleration(CA),constant turning(CT) and Singer models is used to achieve the hypersonic sliding target tracking in near space.Simulation results show that the target tracking in near space can be achieved more effectively by using the proposed algorithm.
基金State Administration of Science,Technology and Industry for the National Defense(No.JSJL2014206B001)。
文摘Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.
文摘For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.
基金National Natural Science Foundation of China(No.52173219)。
文摘A space laser communication acquisition,pointing and tracking(APT)system based on the beacon laser is designed without prior information.And then,a new target scanning method and a pointing and tracking algorithm are proposed.The target scanning mode is the round-trip triangular wave scanning,and it means that scanning track of the PAN-TILT platform follows the triangular wave repeatedly.For the pointing and tracking algorithm,the beacon laser is used as the auxiliary aiming light source.The position of the beacon laser in the viewfield of the complementary metal oxide semiconductor(CMOS)camera is calculated by the centroid algorithm.In order to realize the target tracking,the joint control method of the angle control and the angular velocity control is used.The simulation and experimental results show that the APT system can achieve full coverage scanning in the scanning area and capture the target in one scanning cycle successfully.After capturing the PAN-TILT platform,the pointing and tracking algorithm can track the PAN-TILT platform quickly and accurately,and the tracking accuracy is up to 0.22 mrad.
文摘In addition to describing the social reality of Taiwan’s political and economic chaos, Taiwan’s films after the lifting of martial law also try to explore the ultimate significance of human existence, showing the color of ontology. Under the influence of postmodern culture, Taiwan films adopt non-linear narrative methods such as fragmented, time countercurrent or psychological time, emphasizing people’s instant experience and expressing modern people’s anxiety and social absurdity. In addition, the film highlights the gridding and deformed space, so as to highlight the interpersonal alienation and survival dilemma of modern cities. Taiwan Residents films also reflect the impermanence of fate, the nothingness of existence, and the absurdity of society through the death of characters. It is also coupled with the existential view of “living to death” and “others are hell”.
文摘John Njoroge hopes to be an astro naut when he grows up. The seven- year old Kenyan boy said that flying must be an exciting job. His influenee comes from watching movies and playing video games.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,grant number S-1443-0223.
文摘The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.
基金This work was supported by the National Natural Science Foundation of China(61690210,61690213).
文摘Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.
基金National Natural Science Foundation of China (NSFC) General Program (40705016)100 Talents Programme of The Chinese Academy of Sciences (KCL14014)+2 种基金NSFC Key Program (40730948)NSFC General Program (40675029)the Knowledge Innovation Program of the Chinese Academy of Sciences (0766079301)
文摘Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TCs underwent ET during 1979-2008. The warm-season (June through September) ETs account for 64% of all ET events with the most occurrence in September. The area 120°E-150°E and 20°N-40°N is the most favorable region for ET onsets in western North Pacific. The TCs experiencing ET at latitudes 30°N-40°N have the greatest intensity in contrast to those at other latitude bands. The distribution of ET onset locations shows obviously meridional migration in different seasons. A cyclone phase space (CPS) method was used to analyze the TC evolution during ET. Except for some cases of abnormal ET at relatively high latitudes,typical phase evolution paths-along which TC firstly showed thermal asymmetry and an upper-level cold core and then lost its low-level warm core-can be used to describe the main features of ET processes in western North Pacific. Some seasonal variations of ET evolution paths in CPS were also found at low latitudes south of 15°N,which suggests different ET onset mechanisms there. Further composite analysis concluded that warm-season ETs have generally two types of evolutions,but only one type in cold season (October through next May). The first type of warm-season ETs has less baroclinicity due to long distance between the TC and upper-level mid-latitude system. However,significant interactions between a mid-latitude upper-level trough and TC,which either approaches or is absorbed into the trough,and TC's relations with downstream and upstream upper-level jets,are the fingerprints for both a second type of warm-season ETs and almost all the cold-season ETs. For each type of ETs,detailed structural characteristics as well as precipitation distribution are illustrated by latitude.
基金Sponsored by the National Natural Science Foundation of China(No.51605415)Natural Science Foundation of Hebei Province(No.F2016203494,E2017203240)。
文摘Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金supported by National Natural Science Foundation of China(Grant No.61175098)
文摘The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.
基金the National High-Tech Research & Development Program, China
文摘This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyapunov direct method and dissipative theory. To eliminate the chattering phenomenon, an radial basis function (RBF) neural network is applied to replace the discontinuous part of the control signal. A novel on-line learning method of the weights and parameters of the RBF neural network established using Lyapunov function assures the stability of the system. It is proved that the proposed controller can guarantee that the L2 gain from disturbance to tracking error is lower than the given index y. Simulation results show that the control method is valid.
基金This work was supported by the application foundation for basic research of Jiangsu(No.BJ98057)the innovation foundation for the scientific research of Nanjing University of Aeronautics and Astronautics(No.Y0487-031)
文摘The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China (61074111)the Innovative Team Program of the National Natural Science Foundation of China (61021002)
文摘A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space representation is formulated by local linearization. A parametric approach is applied by using the eigenstructure assignment theory and the model reference method. A feedback stabilizing controller and a feedforward compensation controller are built based on the approach. Then an optimization procedure is followed after that to obtain the desired requirement and characteristics. Simulation results are presented to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60901066)the New Teacher Foundation of Ministry of Education (20090203120006)the Fundamental Research Funds for the Central University (10000902013)
文摘The location of a moving target based on signal fitting and sub-aperture tracking from an airborne multi-channel radar is dealt with.The proposed approach is applied in two steps:first,the ambiguous slant-range velocity is derived with a modified single-snapshot multiple direction of arrival estimation method,and second,the unambiguous slant-range velocity is found using a track-based criterion.The prominent advantage of the proposed approach is that the unambiguous slant-range velocity can be very large.Besides,the first stage is carried out at the determinate range-Doppler test cell by azimuth searching for fitting best to the moving target signal,therefore,the location performance would not be sacrificed in order to suppress clutter and/or interference.The effectiveness and efficiency of the proposed method are validated with a set of airborne experimental data.