A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted ...A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted operations have remarkable effects on the flow pattern of the full flow path. When the inlet operates in a started mode, the transverse pressure gradient generated by the forebody alters the air captured characteristics and the entering flow quality of the inlet. Furthermore, the expansion process of the nozzle jet flow is obviously affected by the external flow field around the afterbody with the cross section shape transiting from a near rectangle at the exit of the nozzle to a near triangle at the tail of the vehicle. When the inlet operates in an unstarted mode, the aerodynamic instability can be observed in the full flow path of the vehicle. Due to the oscillation of the external compressed shock wave and nozzle jet flow, the aerodynamic characteristics of the vehicle vary periodically with the lift-drag ratio changing from 0.25 to 2.09. Finally, by comparing to the experimental data, the reliability of the CFD is verified.展开更多
The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle...The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.展开更多
基金National Nature Science Foundation of China (5060601)
文摘A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted operations have remarkable effects on the flow pattern of the full flow path. When the inlet operates in a started mode, the transverse pressure gradient generated by the forebody alters the air captured characteristics and the entering flow quality of the inlet. Furthermore, the expansion process of the nozzle jet flow is obviously affected by the external flow field around the afterbody with the cross section shape transiting from a near rectangle at the exit of the nozzle to a near triangle at the tail of the vehicle. When the inlet operates in an unstarted mode, the aerodynamic instability can be observed in the full flow path of the vehicle. Due to the oscillation of the external compressed shock wave and nozzle jet flow, the aerodynamic characteristics of the vehicle vary periodically with the lift-drag ratio changing from 0.25 to 2.09. Finally, by comparing to the experimental data, the reliability of the CFD is verified.
基金the Chinese Scholarship Council for supporting the research
文摘The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.