Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the...The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.展开更多
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou...The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the correspondin...We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid,doughnut and z-axis hollow excitation spot,respectively.Our technique achieves super-resolved image by subtracting three di®erently acquired images with proper subtractive factors.Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED.Also,the improvement of lateral and axial resolution is demonstrated by imaging 100 nm°uorescent beads.The experiment yields lateral resolution of 140 nm and axial resolution of approximate 380 nm.展开更多
Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2...Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.展开更多
In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which...In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which cannot be easily reproduced,and is typically affected by quantization.We compare its performance with binary and sinusoidal phase profiles.We also analyze the effect of quantizing the phase levels.Finally,a random approach is adopted to eliminate the additional harmonic orders.In all cases,a liquid-crystal-on-silicon spatial light modulator is employed to experimentally verify and compare the different approaches.展开更多
The square soft-edge diaphragm with round angle is designed by Matlab, and is sent to a liquid crystal spatial light modulator by the computer. In order to obtain precompensation for the following laser system, local ...The square soft-edge diaphragm with round angle is designed by Matlab, and is sent to a liquid crystal spatial light modulator by the computer. In order to obtain precompensation for the following laser system, local diaphragm transmission can be adjusted by feedback signals of surface-channel charge-coupled device (SCCD). This method can reduce the diffraction effect and realize no modulation, high stability, high homogeneity, and large scale laser beam. Several parameters of soft-edge diaphragms which affect the laser beam quality are studied systematically, and the optimized values are obtained. The method can avoid the serious modulation of hard edges and provide soft-edge diaphragms of different shapes in a fast and convenient way for the large scale laser beam system.展开更多
An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Mult...An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Multiple holograms are reconstructed and superimposed, and the intensity is averaged to smooth the noise. The adaptive algorithm based on the nonlocal means is designed to further suppress the speckle. The presented method is compared with other methods reduction is improved, and the proposed method is effective The experimental results show that speckle and feasible.展开更多
The resolution of the spatial light modulator(SLM)screen and the encoding algorithm of the computer-generated hologram are the primary limiting factors in the generation of large topological charge vortex beams.This p...The resolution of the spatial light modulator(SLM)screen and the encoding algorithm of the computer-generated hologram are the primary limiting factors in the generation of large topological charge vortex beams.This paper attempts to solve these problems by improving both the hardware and the algorithm.Theoretically,to overcome the limitations of beam waist radius,the amplitude profile function of large topological charge Laguerre–Gaussian(LG)beam is properly improved.Then,an experimental system employing a 4K phase-only SLM is set up,and the LG beams with topological charge up to 1200 are successfully generated.Furthermore,we discuss the effect of different beam waist radii on the generation of LG beams.Additionally,the function of the LG beam is further improved to generate an LG beam with a topological charge as high as1400.Our results set a new benchmark for generating large topological charge vortex beams,which can be widely used in precise measurement,sensing,and communication.展开更多
A lensless Vanderlugt optical correlator using two phase-only spatial light modulators (SLMs) is proposed. The SLMs are used for displaying input and filter patterns respectively. The SLMs are also used as programma...A lensless Vanderlugt optical correlator using two phase-only spatial light modulators (SLMs) is proposed. The SLMs are used for displaying input and filter patterns respectively. The SLMs are also used as programmable lenses in order to realize the lensless construction. This lensless system is simple and its alignment adjustment is easy. The performance of the SLMs as programmable lenses is also described.展开更多
A new shaping method for producing nanosecond pulses with specific shape is introduced. When a Gaussian laser pulse passes through an electro-optic deflector, it. has been scanned as a line on the focal plane accordin...A new shaping method for producing nanosecond pulses with specific shape is introduced. When a Gaussian laser pulse passes through an electro-optic deflector, it. has been scanned as a line on the focal plane according to time precedence. Through controlling the intensity of transmitted light on each pixol of the liquid crystal spatial light modulator (LCSLM), various complicated pulses can be easily produced. Using this method, various specific shaped pulses with pulse duration varying from 750 ps to 5 ns are achieved.展开更多
A universal programmable multi-quantum-well(MQW) spatial light modulator(SLM) driving circuit is developed.With a twice scanning, it can generate programmable signals to drive a non-linear MQW SLM by using a softw...A universal programmable multi-quantum-well(MQW) spatial light modulator(SLM) driving circuit is developed.With a twice scanning, it can generate programmable signals to drive a non-linear MQW SLM by using a software preprocessing unit.By adjusting the switching network of the driving circuit, this circuit can reduce the switching noise and improve the output precision.The chip test results show that the driving voltage can swing from 0 to VDD, and its resolution could be close to 256 with a pixel area of only 65 × 65 μm2.展开更多
We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing ligh...We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.展开更多
The phase modulation characteristics of a reflective liquid crystal (LC) spatial light modulator (SLM) under oblique incidence are studied by using our proposed self-interference method. The experimental setup of ...The phase modulation characteristics of a reflective liquid crystal (LC) spatial light modulator (SLM) under oblique incidence are studied by using our proposed self-interference method. The experimental setup of the method is very simple and has good robustness to mechanical vibrations. By changing the gray value of the combined grayscale loaded on the LC-SLM, different sheared fringe patterns, generated by the interference between the constant phase-modulated beam and the +1-order diffracted beam of the blazed grating, can be obtained. The amount of phase modulation of the LC-SLM is obtained by subtracting the phase of the two side lobes in the frequency domain. By turning the turntable where the SLM is mounted, the phase modulation characteristics at different incident angles can be measured. The experimental results show that the phase modulation curves do not change significantly with the small angle. When the angle is large (i.e. larger than 10°), the phase modulation curves become different, especially for the high gray levels. With the increase of the incident angle, the phase modulation depth is reduced. The results indicate that the incident angle plays an important role in the performance of the phase modulation of an LC-SLM.展开更多
Multiple quantum well spatial light modulators with 128×128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication p...Multiple quantum well spatial light modulators with 128×128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication processes are described and compared.展开更多
Our latest research results on GaAs-A1GaAs multiple quantum well spatial light modulators are presented. The thickness uniformity of the epitaxial layers across the 3-inch wafer grown by our molecular beam epitaxy is ...Our latest research results on GaAs-A1GaAs multiple quantum well spatial light modulators are presented. The thickness uniformity of the epitaxial layers across the 3-inch wafer grown by our molecular beam epitaxy is better than 0.1% and the variation of cavity resonance wavelength within the wafer is only 0.9 nm. A contrast ratio (CR) of 102 by varying bias voltage from 0 to 6.7 V is achieved after fine tuning the cavity by etching an adjust layer. Both theoretical and experimental results demonstrate that incorporating an adjust layer is an effective tuning method for obtaining high CR.展开更多
This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators(SLMs).Unlike previous solutions,we integrated all blocks in one chip to synchronize ...This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators(SLMs).Unlike previous solutions,we integrated all blocks in one chip to synchronize the control logic circuit and the driving circuits.Single-slope digital-to-analog converters(DACs) inside each pixel are not adopted because it is difficult to eliminate capacitor mismatch.64 column-shared 8-bit resistor-string DACs are utilized to provide programmable output voltages from 0.5 to 3.8 V.They are located on the top of 64×64 driving pixels tightly to match each other with several dummies.Each DAC performs its conversion in 280 ns and draws 80μA.For a high speed data transfer rate,the system adopts a 2-stage shift register that operates at 50 MHz and the modulating rate achieves 50 K frames/s while dissipating 302 mW from a 5-V supply.The die is fabricated in a 0.35 /μm CMOS process and its area is 5.5 x 7 mm^2.展开更多
The combined use of the photoelectric and electro-optic properties of BSO crystal (Bi 12 SiO 20 ) leads to realize spatial light modulation.Under some condition,BSO crystal can become birefringent depending on...The combined use of the photoelectric and electro-optic properties of BSO crystal (Bi 12 SiO 20 ) leads to realize spatial light modulation.Under some condition,BSO crystal can become birefringent depending on a local illuminance.The relationship between the distributions of an illuminance and a birefringence will be discussed.This spatial light modulator can work in real-time. The experiment shows,in order to increase the sensitivity of BSO crystal,an electric field of 6 kV/cm at an atmosphere pressure of 15×10 5 Pa should be applied to BSO crystal.With BSO we have measured 3-dimensional deformation by means of real-time holography.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported by the National Natural Science Foundation of China (U2031210 and 11827804)Science Research from the China Manned Space Project (CMS-CSST-2021-A11 and CMS-CSST-2021-B04).
文摘The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.
基金Project supported by the National Natural Science Foundation of China (Nos 60578035, 50473040) and the Science Foundation of Jilin Province (Nos 20050520, 20050321-2).
文摘The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
基金This work was financially supported by grants from the National Basic Research Program of China (973 Program)(No.2015CB352003)the National Natural Science Foundation of China (Nos.61377013,61335003,61378051,and 61427818)+1 种基金NSFC of Zhejiang province LR16F050001,Innovation Joint Research Center for iCPS (2015XZZX005-01)Open Foundation of the State Key Laboratory of Modern Optical Instrumentation.
文摘We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid,doughnut and z-axis hollow excitation spot,respectively.Our technique achieves super-resolved image by subtracting three di®erently acquired images with proper subtractive factors.Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED.Also,the improvement of lateral and axial resolution is demonstrated by imaging 100 nm°uorescent beads.The experiment yields lateral resolution of 140 nm and axial resolution of approximate 380 nm.
基金supported by the National Natural Science Foundation of China (Grant No. 60878048)the China Postdoctoral Science Foundation (Grant No. 20080440898)
文摘Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.
基金supported by the Ministerio de Ciencia e Innovación,Spain(PID2021-126509OB-C22)Generalitat Valenciana(CIAICO/2021/276)。
文摘In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which cannot be easily reproduced,and is typically affected by quantization.We compare its performance with binary and sinusoidal phase profiles.We also analyze the effect of quantizing the phase levels.Finally,a random approach is adopted to eliminate the additional harmonic orders.In all cases,a liquid-crystal-on-silicon spatial light modulator is employed to experimentally verify and compare the different approaches.
基金supported by the National"863"Program of China under Grant Nos.2007AA03Z448 and 2008AA031901.
文摘The square soft-edge diaphragm with round angle is designed by Matlab, and is sent to a liquid crystal spatial light modulator by the computer. In order to obtain precompensation for the following laser system, local diaphragm transmission can be adjusted by feedback signals of surface-channel charge-coupled device (SCCD). This method can reduce the diffraction effect and realize no modulation, high stability, high homogeneity, and large scale laser beam. Several parameters of soft-edge diaphragms which affect the laser beam quality are studied systematically, and the optimized values are obtained. The method can avoid the serious modulation of hard edges and provide soft-edge diaphragms of different shapes in a fast and convenient way for the large scale laser beam system.
基金supported by the National Natural Science Foundation of China(No.61177018)the Program for New Century Excellent Talents in University(No.NECT-11-0596)+1 种基金the Key Program of Beijing Sci-ence and Technology Plan(No.D121100004812001)Beijing Nova Program(No.2011066)
文摘An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Multiple holograms are reconstructed and superimposed, and the intensity is averaged to smooth the noise. The adaptive algorithm based on the nonlocal means is designed to further suppress the speckle. The presented method is compared with other methods reduction is improved, and the proposed method is effective The experimental results show that speckle and feasible.
基金supported by the National Natural Science Foundation of China(Nos.62173342 and 61805283)the Key Research Projects of Foundation Strengthening Program(No.2019-JCJQ-ZD)。
文摘The resolution of the spatial light modulator(SLM)screen and the encoding algorithm of the computer-generated hologram are the primary limiting factors in the generation of large topological charge vortex beams.This paper attempts to solve these problems by improving both the hardware and the algorithm.Theoretically,to overcome the limitations of beam waist radius,the amplitude profile function of large topological charge Laguerre–Gaussian(LG)beam is properly improved.Then,an experimental system employing a 4K phase-only SLM is set up,and the LG beams with topological charge up to 1200 are successfully generated.Furthermore,we discuss the effect of different beam waist radii on the generation of LG beams.Additionally,the function of the LG beam is further improved to generate an LG beam with a topological charge as high as1400.Our results set a new benchmark for generating large topological charge vortex beams,which can be widely used in precise measurement,sensing,and communication.
文摘A lensless Vanderlugt optical correlator using two phase-only spatial light modulators (SLMs) is proposed. The SLMs are used for displaying input and filter patterns respectively. The SLMs are also used as programmable lenses in order to realize the lensless construction. This lensless system is simple and its alignment adjustment is easy. The performance of the SLMs as programmable lenses is also described.
文摘A new shaping method for producing nanosecond pulses with specific shape is introduced. When a Gaussian laser pulse passes through an electro-optic deflector, it. has been scanned as a line on the focal plane according to time precedence. Through controlling the intensity of transmitted light on each pixol of the liquid crystal spatial light modulator (LCSLM), various complicated pulses can be easily produced. Using this method, various specific shaped pulses with pulse duration varying from 750 ps to 5 ns are achieved.
基金supported by the International Collaboration Plan for Science and Technology of the Chinese Ministry of Science and Technolog(No. 2008DFB10040)
文摘A universal programmable multi-quantum-well(MQW) spatial light modulator(SLM) driving circuit is developed.With a twice scanning, it can generate programmable signals to drive a non-linear MQW SLM by using a software preprocessing unit.By adjusting the switching network of the driving circuit, this circuit can reduce the switching noise and improve the output precision.The chip test results show that the driving voltage can swing from 0 to VDD, and its resolution could be close to 256 with a pixel area of only 65 × 65 μm2.
基金partially supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(C)under Grant No.15K00153
文摘We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.
基金financially supported by the National Natural Science Foundation of China(No.51705404)the China Postdoctoral Science Foundation(No.2016M602806)the Fundamental Research Funds for the Central Universities(No.xjj2017093)
文摘The phase modulation characteristics of a reflective liquid crystal (LC) spatial light modulator (SLM) under oblique incidence are studied by using our proposed self-interference method. The experimental setup of the method is very simple and has good robustness to mechanical vibrations. By changing the gray value of the combined grayscale loaded on the LC-SLM, different sheared fringe patterns, generated by the interference between the constant phase-modulated beam and the +1-order diffracted beam of the blazed grating, can be obtained. The amount of phase modulation of the LC-SLM is obtained by subtracting the phase of the two side lobes in the frequency domain. By turning the turntable where the SLM is mounted, the phase modulation characteristics at different incident angles can be measured. The experimental results show that the phase modulation curves do not change significantly with the small angle. When the angle is large (i.e. larger than 10°), the phase modulation curves become different, especially for the high gray levels. With the increase of the incident angle, the phase modulation depth is reduced. The results indicate that the incident angle plays an important role in the performance of the phase modulation of an LC-SLM.
文摘Multiple quantum well spatial light modulators with 128×128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication processes are described and compared.
基金supported by the President Fund of CAS,the International Collaboration Plan for Science and Technology of the Chinese Ministry of Science and Technology(No.2008KR0415)the Suzhou International Cooperation Fund,China(No.SWH0809).
文摘Our latest research results on GaAs-A1GaAs multiple quantum well spatial light modulators are presented. The thickness uniformity of the epitaxial layers across the 3-inch wafer grown by our molecular beam epitaxy is better than 0.1% and the variation of cavity resonance wavelength within the wafer is only 0.9 nm. A contrast ratio (CR) of 102 by varying bias voltage from 0 to 6.7 V is achieved after fine tuning the cavity by etching an adjust layer. Both theoretical and experimental results demonstrate that incorporating an adjust layer is an effective tuning method for obtaining high CR.
文摘This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators(SLMs).Unlike previous solutions,we integrated all blocks in one chip to synchronize the control logic circuit and the driving circuits.Single-slope digital-to-analog converters(DACs) inside each pixel are not adopted because it is difficult to eliminate capacitor mismatch.64 column-shared 8-bit resistor-string DACs are utilized to provide programmable output voltages from 0.5 to 3.8 V.They are located on the top of 64×64 driving pixels tightly to match each other with several dummies.Each DAC performs its conversion in 280 ns and draws 80μA.For a high speed data transfer rate,the system adopts a 2-stage shift register that operates at 50 MHz and the modulating rate achieves 50 K frames/s while dissipating 302 mW from a 5-V supply.The die is fabricated in a 0.35 /μm CMOS process and its area is 5.5 x 7 mm^2.
文摘The combined use of the photoelectric and electro-optic properties of BSO crystal (Bi 12 SiO 20 ) leads to realize spatial light modulation.Under some condition,BSO crystal can become birefringent depending on a local illuminance.The relationship between the distributions of an illuminance and a birefringence will be discussed.This spatial light modulator can work in real-time. The experiment shows,in order to increase the sensitivity of BSO crystal,an electric field of 6 kV/cm at an atmosphere pressure of 15×10 5 Pa should be applied to BSO crystal.With BSO we have measured 3-dimensional deformation by means of real-time holography.
文摘The liquid crystal television spatial light modulator (LCTVSLM) characterized is usable in optical processing applications,e.g.,optical pattern recognition,associative memory, optical computing,correlation detection and optical data processing systems.The array performance and real-time optical correlation applications are reviewed.