期刊文献+
共找到1,189篇文章
< 1 2 60 >
每页显示 20 50 100
Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields 被引量:8
1
作者 M.MOHAMMADIMEHR R.ROSTAMI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期219-240,共22页
The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the fir... The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young's modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage. 展开更多
关键词 free vibration BENDING rotating sandwich cylindrical shell nanocompositecore piezoelectric layer
下载PDF
Bi-stable states of initially stressed elastic cylindrical shell structures with two piezoelectric surface layers 被引量:1
2
作者 Bin Wang Guo-Hua Nie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期653-659,共7页
A theoretical model is proposed in this paper to predict the bi-stable states of initially stressed cylindrical shell structures attached by surface anisotropic piezoelectric layers.The condition for existence of bi-s... A theoretical model is proposed in this paper to predict the bi-stable states of initially stressed cylindrical shell structures attached by surface anisotropic piezoelectric layers.The condition for existence of bi-stability of the shell structural system is presented and analytical expressions for corresponding rolled-up radii of the stable shell are given based on the principle of minimum strain energy.The resulting solution indicates that the shell system may have two stable configurations besides its initial state under a combined action of the actuating electric field and initial stresses characterized by the bending moment.If the piezoelectric layer materials act as only sensor materials without the actuating electric field,initial stresses may produce the bi-stable states,but one corresponding to its initial state.For the shell without initial stresses,the magnitude in the actuating electric field determines the number of the stable states,one or two stable configurations besides the initial state.The theoretical prediction for the bi-stable states is verified by finite element method(FEM) simulation by using the ABAQUS code. 展开更多
关键词 Bi-stable Initial stress Cylindrical shell Piezoelectric layer Elastic potential energy Rolled-up radius Finite element
下载PDF
Free vibration of circular cylindrical shell with constrained layer damping 被引量:2
3
作者 曹雄涛 张志谊 华宏星 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期495-506,共12页
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayle... Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders' thin shell theory. Nu- merical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed. 展开更多
关键词 sandwich shell cylindrical shell viscoelastic material constrained layer damping free vibration
下载PDF
Frequency Analysis of Multiple Layered Cylindrical Shells under Lateral Pressure with Asymmetric Boundary Conditions 被引量:2
4
作者 ISVANDZIBAEI Mohammad Reza JAMALUDDIN Hishamuddin RAJA HAMZAH Raja Ishak 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期23-31,共9页
Natural frequency characteristics of a thin-walled multiple layered cylindrical shell under lateral pressure are studied. The multiple layered cylindrical shell configuration is formed by three layers of isotropic mat... Natural frequency characteristics of a thin-walled multiple layered cylindrical shell under lateral pressure are studied. The multiple layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum. The multiple layered shell equations with lateral pressure are established based on Love's shell theory. The governing equations of motion with lateral pressure are employed by using energy functional and applying the Ritz method. The boundary conditions represented by end conditions of the multiple layered cylindrical shell are simply supported-clamped(SS-C), free-clamped(F-C) and simply supported-free(SS-F). The influence of different lateral pressures, different thickness to radius ratios, different length to radius ratios and effect of the asymmetric boundary conditions on natural frequency characteristics are studied. It is shown that the lateral pressure has effect on the natural frequency of multiple layered cylindrical shell and causes the natural frequency to increase. The natural frequency of the developed multilayered cylindrical shell is validated by comparing with those in the literature. The proposed research provides an effective approach for vibration analysis shell structures subjected to lateral pressure with an energy method. 展开更多
关键词 multiple layered ritz method lateral pressure shell boundary conditions
下载PDF
Experimental Study on a Single Layer Two-Way Grid Shell with Tension Members 被引量:3
5
作者 Zhonghao Zhang Masumi Fujimoto +1 位作者 Atsuo Takino Katsuhiko Imai 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期10-19,共10页
Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh... Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles. 展开更多
关键词 single layer two-way grid shell tension members out-of-plane placement buckling behavior truss system
下载PDF
ANALYSIS OF SOUND RADIATION FROM THE RING-STIFFENED CYLINDRICAL SHELL COATED WITH VISCOELASTIC LAYER IN FLUID MEDIUM 被引量:2
6
作者 Luo Dongping Cai Minbo Peng Xu Luo Bin (Department of Naval and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期155-161,共7页
The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of st... The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed. 展开更多
关键词 viscoelastic layer ring-stiffened cylindrical coated shell coupling vibration equation sound radiation
下载PDF
Natural frequency characteristics of thin-walled homogeneous and manifold layered cylindrical shells under pressure using energy method 被引量:2
7
作者 M.R.Isvandzibaei Hishamuddin Jamaluddin Raja Ishak Raja Hamzah 《Journal of Central South University》 SCIE EI CAS 2014年第2期521-532,共12页
Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The st... Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases. 展开更多
关键词 cylindrical shell manifold layered PRESSURE energy method
下载PDF
The Stability of Cylindrical Shells Containing an FGM Layer Subjected to Axial Load on the Pasternak Foundation 被引量:2
8
作者 Abdullah Heydaroglu Sofiyev Mehmet Avcar 《Engineering(科研)》 2010年第4期228-236,共9页
In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer... In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations on the Pasternak foundation are obtained. Applying Galerkin’s method analytic solutions are obtained for the critical axial load of three-layered cylindrical shells containing an FGM layer with and without elastic foundation. The detailed parametric studies are carried out to study the influences of thickness variations of the FGM layer, radius-to-thickness ratio, material composition and material profile index, Winkler and Pasternak foundations on the critical axial load of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis. 展开更多
关键词 FGM layer Stability Cylindrical shell Critical AXIAL Load WINKLER and Pasternak FOUNDATIONS
下载PDF
Strip Layer Method for Analysis of the Three-Dimensional Stresses and Spread of Large Cylindrical Shell Rolling
9
作者 LIU Hongmin CHEN Suwen +1 位作者 PENG Yan SUN Jianliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期556-564,共9页
As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary ... As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling. 展开更多
关键词 large cylindrical shell rolling strip layer method three-dimensional stresses rolling pressure friction stress SPREAD
下载PDF
Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping
10
作者 袁丽芸 向宇 +1 位作者 陆静 蒋红华 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期361-372,共12页
Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point ... Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. 展开更多
关键词 active constrained layer damping submerged circular cylindrical shell acoustic radiation multipoint multipole nethod wave functions
下载PDF
Dynamic behavior of single-layer latticed cylindrical shells subjected to seismic loading 被引量:4
11
作者 沈世钊 邢佶慧 范峰 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期269-279,共11页
The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of singl... The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures. 展开更多
关键词 single-layer latticed cylindrical shell dynamic behaviors seismic force coefficient method rise-span ratio length-span ratio surface load intensity member section size
下载PDF
Analysis of Lateritic Soil Reinforced with Palm Kernel Shells for Use as a Sub-Base Layer for Low-Traffic Roads
12
作者 Joel Koti Crespin P.Yabi +2 位作者 Mohamed Gibigaye Anne Millien Christophe Petit 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1469-1482,共14页
In tropical areas,palm oil production generates significant amounts of waste,including palm kernel shells.The use of this waste in the civil engineering sector,presents a very challenging task.In the present study,the... In tropical areas,palm oil production generates significant amounts of waste,including palm kernel shells.The use of this waste in the civil engineering sector,presents a very challenging task.In the present study,the production of lateritic soil(A-2 in GTR classification and A-7-6(9)in HRB classification)reinforced with palm kernel shells is considered.In order to improve their performances,these materials are mixed using the Fuller’s parabolic law.Moreover,experimental tests are used to characterize the physical and mechanical geotechnical properties of the lateritic soil.After characterizing the matrix(i.e.,lateritic soil)and the inclusions(i.e.,palm kernel shells)in their natural state,it is found that Avrankou’s lateritic soil has a high level of fine particles(56.6%),high plasticity(PI=21%)and low lift(ICBR=17%);which makes it unusable in the pavement layer.Results also prove that the mixture composed of 39%of lateritic soil volume and 61%of PKS with a CBR index equals to 30 and the mixture composed of 45%of lateritic soil,40%PKS and 15%of lagoon sand with a CBR index equals to 41 can be used as sub-base layer for roads for low and medium traffic,respectively. 展开更多
关键词 Palm kernel shell lateritic soil subbase layer low-traffic roads
下载PDF
Finite Element Modeling of a Fluid Filled Cylindrical Shell with Active Constrained Layer Damping
13
作者 章艺 张志谊 +1 位作者 童宗鹏 华宏星 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第4期449-455,共7页
On the basis of the piezoelectric theory, Mindlin plate theory, viscoelastic theory and ideal fluid equation, the finite element modeling of a fluid-filled cylindrical shell with active constrained layer damping (ACLD... On the basis of the piezoelectric theory, Mindlin plate theory, viscoelastic theory and ideal fluid equation, the finite element modeling of a fluid-filled cylindrical shell with active constrained layer damping (ACLD) was discussed. Energy methods and Lagrange’s equation were used to obtain dynamic equations of the cylindrical shell with ACLD treatments, which was modeled as well with the finite element method. The GHM (Golla-Hughes-McTavish) method was applied to model the frequency dependent damping of viscoelastic material. Ideal and incompressible fluid was considered to establish the dynamic equations of the fluid-filled cylindrical shell with ACLD treatments, Numerical results obtained from the finite element analysis were compared with those from an experiment. The comparison shows that the proposed modeling method is accurate and reliable. 展开更多
关键词 cylindrical shell fluid-structure interaction active constrained layer damping finit element method
下载PDF
Porous Cobalt Oxide@Layered Double Hydroxide Core-Shell Architectures on Nickel Foam as Electrode for Supercapacitor
14
作者 Zhang Luojiang Hui Kwan San 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期603-610,共8页
The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide... The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g. 展开更多
关键词 CORE-shell cobalt oxide layered double hydroxide(LDH) nickel foam supercapacitor(SC)
下载PDF
Vibration of Three-Layered FGM Cylindrical Shells with Middle Layer of Isotropic Material for Various Boundary Conditions
15
作者 Muhammad Nawaz Naeem Awais Gul Khan +2 位作者 Shahid Hussain Arshad Abdul Ghafar Shah Madiha Gamkhar 《World Journal of Mechanics》 2014年第11期315-331,共17页
In the present study, vibration analysis of a three-layered cylindrical shell is performed whose inner and outer layers are composed of functionally graded materials whereas the middle one is assumed to be of isotropi... In the present study, vibration analysis of a three-layered cylindrical shell is performed whose inner and outer layers are composed of functionally graded materials whereas the middle one is assumed to be of isotropic material. This formation of a cylindrical shell influences stiffness modulii and the resultant material properties. The shell problem is formulated from the constitutive relations of stresses and strains with the displacement deformations and they are taken from Love’s thin shell theory. This problem is transformed into the integral form by evaluating the expressions for the strain and kinetic energies of the shell. Rayleigh-Ritz method is employed to solve the shell dynamic equations. Vibration characteristics of these cylindrical shells are investigated for a number of physical parameters and configurations of the fabrication of shells. The axial modal dependence is approximated by the characteristic beam functions that satisfy the boundary conditions. Results evaluated, show good agreement with the open literature. 展开更多
关键词 Functionally Graded MATERIAL ISOTROPIC MATERIAL Three-layered Cylindrical shell Love’s Thin shell Theory Rayleigh-Ritz Method Natural Frequency
下载PDF
基于渣层法的改进型shell气化炉动态建模与仿真研究 被引量:2
16
作者 唐凯锋 张会生 翁史烈 《动力工程学报》 CAS CSCD 北大核心 2012年第12期979-983,共5页
由于普通集总渣层法模型无法反映气化炉中各参数的分布特性,将水煤浆气化炉仿真中运用的小室建模方法与集总渣层法模型相结合,形成一种新的小室渣层法气化炉模型,并使用该模型对shell气化炉进行仿真.将模型仿真得到的稳态与动态结果与... 由于普通集总渣层法模型无法反映气化炉中各参数的分布特性,将水煤浆气化炉仿真中运用的小室建模方法与集总渣层法模型相结合,形成一种新的小室渣层法气化炉模型,并使用该模型对shell气化炉进行仿真.将模型仿真得到的稳态与动态结果与已有文献数据及原有集总渣层法的仿真结果进行了对比和分析.结果表明:小室渣层法的仿真结果与文献数据相吻合,具有良好的可行性,且在参数分布变化仿真方面的性能优于传统的集总渣层法模型. 展开更多
关键词 shell气化炉 小室渣层法 集总渣层法 动态建模 仿真
下载PDF
BUCKLING AND POSTBUCKLING OF LAMINATED THIN CYLINDRICAL SHELLS UNDER HYGROTHERMAL ENVIRONMENTS 被引量:4
17
作者 SHEN Hui-shen(沈惠申) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第3期270-281,共12页
The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The m... The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied. 展开更多
关键词 structural stability POSTBUCKLING hygrothermal environments composite laminated cylindrical shell a boundary layer theory of shell buckling singular perturbation technique
下载PDF
Postbuckling of Imperfect Stiffened Cylindrical Shells Under Combined External Liquid Pressure and Axial Compression 被引量:1
18
作者 Shen HuishenProfessor, Department of Civil Engineering. Shanghai Jiao Tong University. Shanghai 200030 《China Ocean Engineering》 SCIE EI 1996年第4期367-390,共24页
posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer t... posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form. 展开更多
关键词 structural stability ptwtbuckling stiffened cylindrical shell combined loading boundary layer theory of shell buckling singular perturbation technique.
下载PDF
Reinforcement by polyurethane to stiffness of air-supported fabric formwork for concrete shell construction 被引量:2
19
作者 GUO Xiao QIAN Sheng-shen +1 位作者 QING Qiang GONG Jing-hai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2569-2577,共9页
By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large dev... By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large deviation from the desired shape of concrete shells still remains as central problem due to dead weight of concrete and less stiffness of fabric formwork.Polyurethane can be used not only as a bonding layer between fabrics and concrete but also as an additional stiffening layer.However,there is little research on mechanical behaviors of the polyurethane shell structure.This paper presents experimental studies on an inflated fabric model with and without polyurethane,including relief pressure tests,vertical loading tests and horizontal loading tests.Experimental results show that the additional polyurethane layer can significantly enhance the stiffness of the fabric formwork.Compared with the experiment,a numerical model using shell layered finite elements has a good prediction.The reinforcement by polyurethane to improve stiffness of air-supported fabric formwork is expected to be considered in the design and construction of the concrete shell,especially dealing with the advance of shape-control. 展开更多
关键词 fabric formwork POLYURETHANE STIFFNESS thin-shell structure loading experiment shell layered finite element
下载PDF
New matrix method for analyzing vibration and damping effect of sandwich circular cylindrical shell with viscoelastic core 被引量:1
20
作者 向宇 黄玉盈 +2 位作者 陆静 袁丽芸 邹时智 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1587-1600,共14页
Based on the linear theories of thin cylindrical shells and viscoelastic materials, a governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation... Based on the linear theories of thin cylindrical shells and viscoelastic materials, a governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation is derived. The equation can be written as a matrix differential equation of the first order, and is obtained by considering the energy dissipation due to the shear deformation of the viscoelastic core layer and the interaction between all layers. A new matrix method for solving the governing equation is then presented With an extended homogeneous capacity precision integration approach. Having obtained these, vibration characteristics and damping effect of the sandwich cylindrical shell can be studied. The method differs from a recently published work as the state vector in the governing equation is composed of displacements and internal forces of the sandwich shell rather than displacements and their derivatives. So the present method can be applied to solve dynamic problems of the kind of sandwich shells with various boundary conditions and partially constrained layer damping. Numerical examples show that the proposed approach is effective and reliable compared with the existing methods. 展开更多
关键词 constrained layer damping matrix differential equation of first order circular cylindrical shell high precision integration approach
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部