Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size ...Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size distri- bution, thermal conductivity and mechanical properties was investigated. The results show that the bulk density of the light-weight magnesium -aluminate spinel mate- rials is in the range of O. 7 1.2 g cm-3 ; pore size distribution curves show single-peak characteristics and the mean pore size is in the range of 30. 83 - 61.37 μm ; with the increase of solid loading, the linear shrinkage of the green body during firing and the permanent change in dimensions on heating at l 600 ℃ for 3 h de- crease, but the bulk density increases, the mechanical properties increase obviously; the maximum compressive strength and bending strength reach 35. 25 MPa and 9. 92 MPa, respectively, while the bulk density is 1. 16 g · cm ; and the thermal conductivity at 1 000 ℃ tea- ches 0. 371 W · m-1 . K-1 while the bulk density is O. 7 -3 g · cm展开更多
High entropy alloys(HEAs)possess good mechanical properties and a wide range of industrial applications.In this paper,phase formation prediction theory,microstructure,properties and preparation methods of light-weight...High entropy alloys(HEAs)possess good mechanical properties and a wide range of industrial applications.In this paper,phase formation prediction theory,microstructure,properties and preparation methods of light-weight HEAs(LWHEAs)were reviewed.The problems and challenges faced by LWHEAs development were analyzed.The results showed that many aspects are still weak and require investigation for future advanced alloys,such as clarification of the role of entropy in phase formation and properties of HEAs,improved definition and different generations division of HEAs,close-packed hexagonal(HCP)phase structure prediction and corresponding alloy design and fabrication.Finally,some suggestions were presented in this paper including in-depth research on formation mechanism of multi-component alloy phase and strengthening of large-scale HEA preparation methods via technology compounding and 3D printing technology.Also,there is a need for more research on the in-situ preparation of HEA coatings and films,as well as developing LWHEAs with superior strength and elevated temperature resistance or ultra-low temperature resistance to meet the requirements of future engineering applications.展开更多
The Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5)light-weight high-entropy alloy with globular microstructure was fabricated by isothermal heat treatment.The effects of isothermal temperatures and holding times on the semi-solid mi...The Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5)light-weight high-entropy alloy with globular microstructure was fabricated by isothermal heat treatment.The effects of isothermal temperatures and holding times on the semi-solid microstructure evolution were investigated.The results indicate that,with increase of the isothermal temperature,the average grain size increases and the spheroidization time shortens.With prolongation of holding time,the shape factor increases firstly and then decreases,and the average grain size decreases at first and then increases when the isothermal temperature is below 520°C,however it increases gradually at 540℃.The optimal semi-solid microstructure is obtained at 520℃ for 30 min,whose shape factor and average grain size are 0.90 and 56.4μm,respectively.Compared with as-cast Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy,the compressive strength and plasticity of semi-solid Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy are increased by 36%and 108%,respectively.The formation of semi-solid microstructures includes three stages:melting separation,spheroidization,and coarsening growth.The sluggish diffusion effect of Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy leads to a low coarsening rate,resulting in slow grain growth.展开更多
Low profile and light weight are very important for practical applications of a spoof surface plasmon polariton(SSPP)coupler, especially at low frequencies. In this paper, we propose and design an ultra-thin, light-...Low profile and light weight are very important for practical applications of a spoof surface plasmon polariton(SSPP)coupler, especially at low frequencies. In this paper, we propose and design an ultra-thin, light-weight SSPP coupler based on broadside coupled split ring resonators(BC-SRRs). The size of BC-SRR can be far less than λ/100 and can extremely well control the reflective phases within a subwavelength thickness. Due to the broadside capacitive coupling, the electrical size of BC-SRR is dramatically reduced to guarantee the ultra-thin thickness of the SSPP coupler. The weight of the SSPP coupler is reduced by a low occupation ratio of BC-SRR in the unit cell volume. As an example, a C-band SSPP coupler composed of phase gradient BC-SRRs is designed, fabricated, and measured. Due to the ultra-small size and low occupation ratio of BC-SRRs, the thickness of the coupler is λ/12 and the surface density is only 0.98 kg/m^2. Both simulation and experiment results verify that the coupler can achieve high-efficiency SPP coupling at 5.27 GHz under normal incidence.展开更多
More and more light-weighted fabrics are being required by the market, especially for the worsted manufacture.In the past, such fabrics are produced mainly through changing the structure of woven goods or by using fin...More and more light-weighted fabrics are being required by the market, especially for the worsted manufacture.In the past, such fabrics are produced mainly through changing the structure of woven goods or by using finer yarns. But these possibilities are very limited. In this paper, new devices are discussed: (1) on the yarn level- to use single yarns instead of conventional doubled ones, to decrease number of fibers in yarn cross sections beth during spinning and after finishing; (2) on the fiber level - to use finer fibers in blends with wool and modification of the wool fibers; (3) on the macromolecule level - to stretch the macromolecules in alpha keratin, to get super fine wool fibers.展开更多
In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-we...In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-weight aggre- gates, bauxite homogenization powder, microsilica , cal- cium aluminate cement as main raw materials, light- weight Al2 03 - SiO2 system castables were prepared by replacing conventional light-weight aggregate with spherical light-weight aggregates. The effects of spheri- cal light-weight aggregates addition on workability, me- chanical properties of castables after heated at different temperatures were researched; the microstructure of the aggregates was analyzed by SEM. The result shows that the introduction of spherical light-weight aggregates can significantly improve the flowability and reduce the water addition of the castables. Water demand of the castable is reduced from 18% with the conventional light-weight aggregates to 14% with spherical light-weight aggre- gates. In addition, light-weight castables prepared by spherical aggregates can keep the same workability with- in a wider range of water addition. Therefore, spherical aggregates are user-friendly. The introduction of spheri- cal light-weight aggregates is favorable to packing densi- ty and mechanical properties of castables, such as cold crushing strength, cold modulus of rupture, hot modulus of rupture at 1 200℃.展开更多
By means of measurement with the FAST instruments, the effect of commercial Synthappret BAP treatment on the tailorability of light-weight wool worsted fabrics has been investigated. It was found that the commercial S...By means of measurement with the FAST instruments, the effect of commercial Synthappret BAP treatment on the tailorability of light-weight wool worsted fabrics has been investigated. It was found that the commercial Synthappret BAP treatment unproved the tailorability of the light-weight wool fabrics mainly by increasing the bending stiffness of the light-weight wool fabrics.展开更多
Using the forearm test, the prickle of 26 commercially available light-weight worsted woven wool fabrics and 7 other fiber fabrics were studied under (24±1)℃ temperature and (65±5)% RH conditions. The surfa...Using the forearm test, the prickle of 26 commercially available light-weight worsted woven wool fabrics and 7 other fiber fabrics were studied under (24±1)℃ temperature and (65±5)% RH conditions. The surface fiber diameter of part of the wool fabrics was measured using a microscope. It was found that most of the light-weight worsted woven wool fabrics gave a prickle sensation under the above conditions. The prickle sensation was significantly correlated with the mean fiber diameter of the surface hairiness. It was also found that the prickle of the light-weight worsted woven wool fabrics was significantly correlated with the number of surface fibers which were coarser than 26 μm diameter.展开更多
The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high...The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high temperature gas around the capsule was coupled with flow field. Hayabusa capsule reentered the atmosphere about 12 km/sec in velocity and Mach number about 30. During such an atmospheric entry, space vehicle is exposed to very savior aerodynamic heating due to convection and radiation. In this study, Hayabusa capsule was treated as a typical model of the atmospheric entry spacecraft. The light-weight ablator had porous structure, and permeability was an important parameter to analyze flow inside ablator. In this study, permeability was a variable parameter dependent on density of ablator. It is found that the effect of permeability of light-weight ablator was important with this analysis.展开更多
Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural comp...Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings.展开更多
基金supported by the National Basic Research Program of China(973 Program,No.2010CB735810)
文摘Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size distri- bution, thermal conductivity and mechanical properties was investigated. The results show that the bulk density of the light-weight magnesium -aluminate spinel mate- rials is in the range of O. 7 1.2 g cm-3 ; pore size distribution curves show single-peak characteristics and the mean pore size is in the range of 30. 83 - 61.37 μm ; with the increase of solid loading, the linear shrinkage of the green body during firing and the permanent change in dimensions on heating at l 600 ℃ for 3 h de- crease, but the bulk density increases, the mechanical properties increase obviously; the maximum compressive strength and bending strength reach 35. 25 MPa and 9. 92 MPa, respectively, while the bulk density is 1. 16 g · cm ; and the thermal conductivity at 1 000 ℃ tea- ches 0. 371 W · m-1 . K-1 while the bulk density is O. 7 -3 g · cm
基金Funded by the National Natural Science Foundation of China(No.51405510)。
文摘High entropy alloys(HEAs)possess good mechanical properties and a wide range of industrial applications.In this paper,phase formation prediction theory,microstructure,properties and preparation methods of light-weight HEAs(LWHEAs)were reviewed.The problems and challenges faced by LWHEAs development were analyzed.The results showed that many aspects are still weak and require investigation for future advanced alloys,such as clarification of the role of entropy in phase formation and properties of HEAs,improved definition and different generations division of HEAs,close-packed hexagonal(HCP)phase structure prediction and corresponding alloy design and fabrication.Finally,some suggestions were presented in this paper including in-depth research on formation mechanism of multi-component alloy phase and strengthening of large-scale HEA preparation methods via technology compounding and 3D printing technology.Also,there is a need for more research on the in-situ preparation of HEA coatings and films,as well as developing LWHEAs with superior strength and elevated temperature resistance or ultra-low temperature resistance to meet the requirements of future engineering applications.
基金supported by the National Natural Science Foundation of China(Grant No.51865011)the Natural Science Foundation of Jiangxi Province,China(Grant No.20212BAB204008).
文摘The Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5)light-weight high-entropy alloy with globular microstructure was fabricated by isothermal heat treatment.The effects of isothermal temperatures and holding times on the semi-solid microstructure evolution were investigated.The results indicate that,with increase of the isothermal temperature,the average grain size increases and the spheroidization time shortens.With prolongation of holding time,the shape factor increases firstly and then decreases,and the average grain size decreases at first and then increases when the isothermal temperature is below 520°C,however it increases gradually at 540℃.The optimal semi-solid microstructure is obtained at 520℃ for 30 min,whose shape factor and average grain size are 0.90 and 56.4μm,respectively.Compared with as-cast Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy,the compressive strength and plasticity of semi-solid Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy are increased by 36%and 108%,respectively.The formation of semi-solid microstructures includes three stages:melting separation,spheroidization,and coarsening growth.The sluggish diffusion effect of Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy leads to a low coarsening rate,resulting in slow grain growth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331005,61471388,and 61501503)
文摘Low profile and light weight are very important for practical applications of a spoof surface plasmon polariton(SSPP)coupler, especially at low frequencies. In this paper, we propose and design an ultra-thin, light-weight SSPP coupler based on broadside coupled split ring resonators(BC-SRRs). The size of BC-SRR can be far less than λ/100 and can extremely well control the reflective phases within a subwavelength thickness. Due to the broadside capacitive coupling, the electrical size of BC-SRR is dramatically reduced to guarantee the ultra-thin thickness of the SSPP coupler. The weight of the SSPP coupler is reduced by a low occupation ratio of BC-SRR in the unit cell volume. As an example, a C-band SSPP coupler composed of phase gradient BC-SRRs is designed, fabricated, and measured. Due to the ultra-small size and low occupation ratio of BC-SRRs, the thickness of the coupler is λ/12 and the surface density is only 0.98 kg/m^2. Both simulation and experiment results verify that the coupler can achieve high-efficiency SPP coupling at 5.27 GHz under normal incidence.
文摘More and more light-weighted fabrics are being required by the market, especially for the worsted manufacture.In the past, such fabrics are produced mainly through changing the structure of woven goods or by using finer yarns. But these possibilities are very limited. In this paper, new devices are discussed: (1) on the yarn level- to use single yarns instead of conventional doubled ones, to decrease number of fibers in yarn cross sections beth during spinning and after finishing; (2) on the fiber level - to use finer fibers in blends with wool and modification of the wool fibers; (3) on the macromolecule level - to stretch the macromolecules in alpha keratin, to get super fine wool fibers.
基金The National Natural Science Foundation of China(Grant No.51402089)
文摘In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-weight aggre- gates, bauxite homogenization powder, microsilica , cal- cium aluminate cement as main raw materials, light- weight Al2 03 - SiO2 system castables were prepared by replacing conventional light-weight aggregate with spherical light-weight aggregates. The effects of spheri- cal light-weight aggregates addition on workability, me- chanical properties of castables after heated at different temperatures were researched; the microstructure of the aggregates was analyzed by SEM. The result shows that the introduction of spherical light-weight aggregates can significantly improve the flowability and reduce the water addition of the castables. Water demand of the castable is reduced from 18% with the conventional light-weight aggregates to 14% with spherical light-weight aggre- gates. In addition, light-weight castables prepared by spherical aggregates can keep the same workability with- in a wider range of water addition. Therefore, spherical aggregates are user-friendly. The introduction of spheri- cal light-weight aggregates is favorable to packing densi- ty and mechanical properties of castables, such as cold crushing strength, cold modulus of rupture, hot modulus of rupture at 1 200℃.
基金This project was generously funded by International Wool Secretariat.
文摘By means of measurement with the FAST instruments, the effect of commercial Synthappret BAP treatment on the tailorability of light-weight wool worsted fabrics has been investigated. It was found that the commercial Synthappret BAP treatment unproved the tailorability of the light-weight wool fabrics mainly by increasing the bending stiffness of the light-weight wool fabrics.
文摘Using the forearm test, the prickle of 26 commercially available light-weight worsted woven wool fabrics and 7 other fiber fabrics were studied under (24±1)℃ temperature and (65±5)% RH conditions. The surface fiber diameter of part of the wool fabrics was measured using a microscope. It was found that most of the light-weight worsted woven wool fabrics gave a prickle sensation under the above conditions. The prickle sensation was significantly correlated with the mean fiber diameter of the surface hairiness. It was also found that the prickle of the light-weight worsted woven wool fabrics was significantly correlated with the number of surface fibers which were coarser than 26 μm diameter.
文摘The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high temperature gas around the capsule was coupled with flow field. Hayabusa capsule reentered the atmosphere about 12 km/sec in velocity and Mach number about 30. During such an atmospheric entry, space vehicle is exposed to very savior aerodynamic heating due to convection and radiation. In this study, Hayabusa capsule was treated as a typical model of the atmospheric entry spacecraft. The light-weight ablator had porous structure, and permeability was an important parameter to analyze flow inside ablator. In this study, permeability was a variable parameter dependent on density of ablator. It is found that the effect of permeability of light-weight ablator was important with this analysis.
文摘Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings.