期刊文献+
共找到9,877篇文章
< 1 2 250 >
每页显示 20 50 100
基于ML估计的高动态GNSS信号快速捕获检测方法
1
作者 郝顺义 李建文 +1 位作者 卢航 黄国荣 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期87-94,共8页
针对高动态环境下GNSS因频域带宽增加导致捕获难度增大的问题,分析了接收端数字中频采样信号的传输特性及复基带信号经FFT模块处理后的相关峰的检测,提出了基于极大似然(ML)估计的高动态GNSS信号快速捕获检测方法。首先,根据随机信号的... 针对高动态环境下GNSS因频域带宽增加导致捕获难度增大的问题,分析了接收端数字中频采样信号的传输特性及复基带信号经FFT模块处理后的相关峰的检测,提出了基于极大似然(ML)估计的高动态GNSS信号快速捕获检测方法。首先,根据随机信号的统计理论建立二元假设检验条件,构建了奈曼-皮尔逊准则下的GNSS信号捕获判决门限模型;其次,通过判决量的统计特性对等效高斯白噪声方差进行ML估计,根据其估计值计算捕获判决门限,其中通过虚警率的量化放大处理,解决了判决量样本值的增加带来的估计偏差问题;最后,对不同高动态条件下北斗B3I信号进行了捕获检测仿真实验。结果表明采用ML估计方法确定捕获判决门限从而提高高动态GNSS信号捕获的检测方法对高动态适应范围较宽,其频移捕获精度与SINS信息辅助捕获相当,比序贯检测算法提高约28%以上,相同条件下具有更快的平均捕获检测速度。 展开更多
关键词 GNSS 捕获 极大似然 判决门限 虚警率
下载PDF
WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML) 被引量:45
2
作者 MEYER Karin 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第11期815-821,共7页
WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted ma... WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses. Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from http://agbu. une.edu.au/-kmeyer/wombat.html 展开更多
关键词 SOFTWARE Variance components Genetic parameters Mixed model Restricted maximum likelihood
下载PDF
基于LPNN的无源ML-TDOA估计
3
作者 史红伟 左越 《沈阳工业大学学报》 CAS 北大核心 2024年第6期832-839,共8页
针对无源时差定位(TDOA)领域的非线性方程求解问题,提出了一种基于最大似然估计的改进型拉格朗日规划神经网络迭代求解算法。该算法利用最大似然估计构建代价函数,结合时空约束条件,建立TDOA方程的一般约束优化问题,并通过迭代求解算法... 针对无源时差定位(TDOA)领域的非线性方程求解问题,提出了一种基于最大似然估计的改进型拉格朗日规划神经网络迭代求解算法。该算法利用最大似然估计构建代价函数,结合时空约束条件,建立TDOA方程的一般约束优化问题,并通过迭代求解算法对网络的收敛性和渐近稳定性进行了证明。针对两种常见的阵列排布方式进行了仿真验证与性能分析。仿真实验结果表明,该算法能够提供精确的坐标估计,误差小于1.414×10^(-3)。与传统算法相比,该方法在各类噪声环境下表现出更优的性能,尤其在0 dB噪声环境下,其均方误差为0.7866。 展开更多
关键词 无源定位 时差定位 到达时间差 最大似然估计 拉格朗日规划神经网络 模拟神经网络 一般约束优化问题 代价函数
下载PDF
Studies on unfolding energy spectra of neutrons using maximumlikelihood expectation–maximization method 被引量:3
4
作者 Mehrdad Shahmohammadi Beni D.Krstic +1 位作者 D.Nikezic K.N.Yu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第9期24-33,共10页
Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g.,... Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g., for some radiotherapy treatment machines, they are unknown in other cases, e.g., for photoneutrons created in radiotherapy rooms and neutrons generated in nuclear reactors. In situations where neutron energy spectra need to be determined, unfolding the required neutron energy spectra using the Bonner sphere spectrometer (BSS) and nested neutron spectrometer (NNS) has been found promising. However, without any prior knowledge on the spectra, the unfolding process has remained a tedious task. In this work, a standalone numerical tool named ‘‘NRUunfold’’ was developed which could satisfactorily unfold neutron spectra for BSS or NNS, or any other systems using similar detection methodology. A generic and versatile algorithm based on maximum-likelihood expectation– maximization method was developed and benchmarked against the widely used STAY’SL algorithm which was based on the least squares method. The present method could output decent results in the absence of precisely calculated initial guess, although it was also remarked that employment of exceptionally bizarre initial spectra could lead to some unreasonable output spectra. The neutron count rates computed using the manufacturer’s response functions were used for sensitivity studies. The present NRUunfold code could be useful for neutron energy spectrum unfolding for BSS or NNS applications in the absence of a precisely calculated initial guess. 展开更多
关键词 NEUTRON spectrometry MAXIMUM-likelihood expectation–maximization Nested NEUTRON spectrometer
下载PDF
Cloudless-Training:基于serverless的高效跨地域分布式ML训练框架
5
作者 谭文婷 吕存驰 +1 位作者 史骁 赵晓芳 《高技术通讯》 CAS 北大核心 2024年第3期219-232,共14页
跨地域分布式机器学习(ML)训练能够联合多区域的云资源协作训练,可满足许多新兴ML场景(比如大型模型训练、联邦学习)的训练需求。但其训练效率仍受2方面挑战的制约。首先,多区域云资源缺乏有效的弹性调度,这会影响训练的资源利用率和性... 跨地域分布式机器学习(ML)训练能够联合多区域的云资源协作训练,可满足许多新兴ML场景(比如大型模型训练、联邦学习)的训练需求。但其训练效率仍受2方面挑战的制约。首先,多区域云资源缺乏有效的弹性调度,这会影响训练的资源利用率和性能;其次,模型跨地域同步需要在广域网(WAN)上高频通信,受WAN的低带宽和高波动的影响,会产生巨大通信开销。本文提出Cloudless-Training,从3个方面实现高效的跨地域分布式ML训练。首先,它基于serverless计算模式实现,使用控制层和训练执行层的2层架构,支持多云区域的弹性调度和通信。其次,它提供一种弹性调度策略,根据可用云资源的异构性和训练数据集的分布自适应地部署训练工作流。最后,它提供了2种高效的跨云同步策略,包括基于梯度累积的异步随机梯度下降(ASGD-GA)和跨云参数服务器(PS)间的模型平均(MA)。Cloudless-Training是基于OpenFaaS实现的,并被部署在腾讯云上评估,实验结果表明Cloudless-Training可显著地提高跨地域分布式ML训练的资源利用率(训练成本降低了9.2%~24.0%)和同步效率(训练速度最多比基线快1.7倍),并能保证模型的收敛精度。 展开更多
关键词 跨地域分布式机器学习(ml)训练 跨云ml训练 分布式训练框架 serverless 跨云模型同步
下载PDF
考虑MLS点云邻域特征的道路附属设施检测
6
作者 王羽尘 陈天珩 +2 位作者 于斌 陈其航 陈晓阳 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期1530-1539,共10页
为高效准确地获取道路附属设施运营现状,提出了一种考虑点云邻域特征的道路附属设施检测方法.首先,结合点云邻域特征和行车轨迹点,构建基于最近行车轨迹点的数据索引和伪坐标;其次,利用主成分分析法和网格化搜索法,设计从下部杆状物提... 为高效准确地获取道路附属设施运营现状,提出了一种考虑点云邻域特征的道路附属设施检测方法.首先,结合点云邻域特征和行车轨迹点,构建基于最近行车轨迹点的数据索引和伪坐标;其次,利用主成分分析法和网格化搜索法,设计从下部杆状物提取到上方点补全的两阶段法,实.现路侧杆状附属设施检测;然后,结合道路边界和行车轨迹高程基准进行路内上方附属设施提取,通过最小二乘法开展净空分析.结果表明,数据集中路侧杆状的检测精确率和召回率分别超过91%和90%,路内上方附属设施检测精确率和召回率分别超过93%和92%,且计算时间不超过20 s,满足工程需求.由于下部杆状物体被遮挡,部分路侧杆状附属设施的检测存在误差.采用所提方法计算得到的道路净空误差均小于0.1 m,具有较高的可行性和精确性,能够满足附属设施提取、检测和管理的需求. 展开更多
关键词 道路工程 道路附属设施检测 mlS点云 邻域特征
下载PDF
体积>80mL的良性前列腺增生患者经尿道等离子前列腺电切术中应用尖部收切法的可行性与安全性分析
7
作者 彭强 王定勇 +2 位作者 田峰 王魏龙 赵修民 《河北医学》 CAS 2024年第4期651-656,共6页
目的:分析体积>80mL的良性前列腺增生(BPH)患者经尿道等离子前列腺电切术(TUP-KP)术中应用尖部收切法的可行性与安全性。方法:选取2019年10月至2022年10月196例我院体积>80mL、择期手术的BPH患者,随机分为两组,研究组(n=98,采用TU... 目的:分析体积>80mL的良性前列腺增生(BPH)患者经尿道等离子前列腺电切术(TUP-KP)术中应用尖部收切法的可行性与安全性。方法:选取2019年10月至2022年10月196例我院体积>80mL、择期手术的BPH患者,随机分为两组,研究组(n=98,采用TUPKP术中应用尖部收切法),常规组(n=98,采用常规TUPKP术),比较两组患者手术相关指标、逼尿肌稳定性相关指标、前列腺症状、生活质量及并发症。结果:两组手术相关指标差异无统计学意义(P>0.05);术后3个月,两组患者逼尿肌压力、初始尿意容量、排尿后残尿量以及最大尿意容量各自较术前相比皆有所改善(P<0.05),但两组患者组间上述指标差值均无统计学意义(P>0.05);术后3个月,研究组国际前列腺症状评分等级优于常规组(P<0.05),且时间与前列腺症状分级的交互项具有显著性(P<0.05);术后3个月,两组患者生活质量评分量表各维度较术前均升高(P<0.05),研究组生活质量评分量表各维度差值均高于常规组(P<0.05);术后3个月,研究组总并发症发生率为2.04%,低于常规组的9.18%(P<0.05)。结论:TUPKP术中应用尖部收切法治疗体积>80mL的BPH患者可缓解症状,改善生活质量,且并发症少,安全可靠。 展开更多
关键词 良性前列腺增生 经尿道等离子前列腺电切术 体积>80ml 尖部收切法
下载PDF
基于PSO和MLEM混合算法的NDP测量反演算法研究
8
作者 李远辉 杨芮 +4 位作者 张庆贤 肖才锦 陈弘杰 肖鸿飞 程志强 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第5期1152-1159,共8页
中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法... 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法。针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度。应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中^(6)Li的NDP模拟能谱进行反演,并对反演计算结果进行了评价。结果表明:对比PSO算法,PSO-MLEM算法的收敛效率与计算精度明显提升;对比MLEM算法,PSO-MLEM算法的全局寻优能力有效提升了反演精度,避免了局部最优解的影响;对比SVDLS算法,PSO-MLEM算法的反演精度明显提升。 展开更多
关键词 中子深度剖面分析 粒子群算法 最大似然期望最大化算法 锂电池
下载PDF
Empirical likelihood for spatial cross-sectional data models with matrix exponential spatial specification
9
作者 LIU Yan RONG Jian-rong QIN Yong-song 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期125-139,共15页
In this paper,we study spatial cross-sectional data models in the form of matrix exponential spatial specification(MESS),where MESS appears in both dependent and error terms.The empirical likelihood(EL)ratio statistic... In this paper,we study spatial cross-sectional data models in the form of matrix exponential spatial specification(MESS),where MESS appears in both dependent and error terms.The empirical likelihood(EL)ratio statistics are established for the parameters of the MESS model.It is shown that the limiting distributions of EL ratio statistics follow chi-square distributions,which are used to construct the confidence regions of model parameters.Simulation experiments are conducted to compare the performances of confidence regions based on EL method and normal approximation method. 展开更多
关键词 MESS empirical likelihood con dence region
下载PDF
Beamspace maximum likelihood algorithm based on sum and difference beams for elevation estimation
10
作者 CHEN Sheng ZHAO Yongbo +1 位作者 HU Yili PANG Xiaojiao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期589-598,共10页
Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rare... Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms. 展开更多
关键词 elevation estimation BEAMSPACE multipath environment maximum likelihood
下载PDF
心理疏导及认知干预对提升400 mL献血率的影响
11
作者 顾文琴 常学兰 逄晓燕 《中国卫生标准管理》 2024年第4期154-157,共4页
目的 探讨心理疏导和认知干预对提升400 mL献血率的影响。方法 选取2021年1月—2023年8月青岛市中心血站西海岸第一献血服务部的24 700名志愿者参与研究,按献血时间先后顺序进行分组,其中2021年1月—2022年4月接受常规健康教育的12 350... 目的 探讨心理疏导和认知干预对提升400 mL献血率的影响。方法 选取2021年1月—2023年8月青岛市中心血站西海岸第一献血服务部的24 700名志愿者参与研究,按献血时间先后顺序进行分组,其中2021年1月—2022年4月接受常规健康教育的12 350名志愿者为对照组,2022年5月—2023年8月接受心理疏导和认知干预的12 350名志愿者为试验组。比较2组志愿者的献血知识知晓率、400 mL献血率、焦虑和抗拒情绪评分、献血满意度。结果 试验组献血知识知晓率为99.24%,400 mL献血率为85.11%,均高于对照组的98.61%、81.85%(P <0.05);试验组干预后的焦虑和抗拒情绪评分均低于对照组(P <0.05);试验组献血总满意度高于对照组,差异有统计学意义(P <0.05)。结论 心理疏导和认知干预在提升400 mL献血率、减轻焦虑和抗拒情绪方面具有显著效果;这些干预方法不仅在促进献血行为方面有潜在应用,还能提升献血体验的满意度。 展开更多
关键词 心理疏导 认知干预 400 ml献血率 焦虑情绪 满意度 献血意愿
下载PDF
基于DBSCAN-ML的液压风力发电机故障诊断研究
12
作者 宾世杨 李利强 +1 位作者 程乐 陈浩武 《机床与液压》 北大核心 2024年第14期227-235,共9页
传统风力发电机对于系统故障的解决方案是有限和预先确定的,而具有大量传感器数据的故障预测诊断可以有效预防可能发生的系统故障,从而降低设备维护成本。为此,提出一种基于DBSCAN-ML的风力发电机故障诊断策略。基于密度的应用噪声算法... 传统风力发电机对于系统故障的解决方案是有限和预先确定的,而具有大量传感器数据的故障预测诊断可以有效预防可能发生的系统故障,从而降低设备维护成本。为此,提出一种基于DBSCAN-ML的风力发电机故障诊断策略。基于密度的应用噪声算法空间聚类(DBSCAN)从正常状态数据中分类出异常状态的风力机数据,然后采用决策树和随机森林算法2种机器学习(ML)算法构建预测模型,最后使用K折交叉验证进行测试。通过广西31台风力发电机组数据对此故障诊断方案进行案例验证。结果表明:DBSCAN算法可以有效分离异常状态数据,且决策树预测模型和随机森林模型可以分别获得92.7%和92.1%的准确率,通过数据挖掘和建模可以检测风力发电机组的故障,并可以预测部件的维护需求。 展开更多
关键词 风力发电机 基于密度的应用噪声算法空间聚类(DBSCAN) 机器学习(ml) 决策树 随机森林 K折交叉验证 故障诊断
下载PDF
A Likelihood-Based Multiple Change Point Algorithm for Count Data with Allowance for Over-Dispersion
13
作者 Shalyne Nyambura Anthony Waititu +1 位作者 Antony Wanjoya Herbert Imboga 《Open Journal of Statistics》 2024年第5期518-545,共28页
Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the c... Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the context of change point analysis. This study develops a likelihood-based algorithm that detects and estimates multiple change points in a set of count data assumed to follow the Negative Binomial distribution. Discrete change point procedures discussed in literature work well for equi-dispersed data. The new algorithm produces reliable estimates of change points in cases of both equi-dispersed and over-dispersed count data;hence its advantage over other count data change point techniques. The Negative Binomial Multiple Change Point Algorithm was tested using simulated data for different sample sizes and varying positions of change. Changes in the distribution parameters were detected and estimated by conducting a likelihood ratio test on several partitions of data obtained through step-wise recursive binary segmentation. Critical values for the likelihood ratio test were developed and used to check for significance of the maximum likelihood estimates of the change points. The change point algorithm was found to work best for large datasets, though it also works well for small and medium-sized datasets with little to no error in the location of change points. The algorithm correctly detects changes when present and fails to detect changes when change is absent in actual sense. Power analysis of the likelihood ratio test for change was performed through Monte-Carlo simulation in the single change point setting. Sensitivity analysis of the test power showed that likelihood ratio test is the most powerful when the simulated change points are located mid-way through the sample data as opposed to when changes were located in the periphery. Further, the test is more powerful when the change was located three-quarter-way through the sample data compared to when the change point is closer (quarter-way) to the first observation. 展开更多
关键词 OVER-DISPERSION Multiple Changepoint Binary Segmentation likelihood Ratio Test
下载PDF
顾及RMLE的GNSS时序噪声特性及环境负载修正
14
作者 孙喜文 鲁铁定 +1 位作者 贺小星 黄佳慧 《导航定位学报》 CSCD 北大核心 2024年第1期21-27,42,共8页
针对环境负载易对全球卫星导航系统(GNSS)站坐标时序修正前后噪声模型特性及其站速度造成影响的问题,提出一种顾及约束最大似然估计(RMLE)的GNSS时序噪声特性及环境负载修正方法:选用206个连续13a的GNSS站时间序列,采用改进的贝叶斯信... 针对环境负载易对全球卫星导航系统(GNSS)站坐标时序修正前后噪声模型特性及其站速度造成影响的问题,提出一种顾及约束最大似然估计(RMLE)的GNSS时序噪声特性及环境负载修正方法:选用206个连续13a的GNSS站时间序列,采用改进的贝叶斯信息模型估计准则,利用约束最大似然估计(RMLE)方法探讨和分析大气压负载、非海洋潮汐负荷、积雪负载及土壤水负载等环境负载对GNSS时序修正前后噪声模型特性及其站速度的影响。结果表明:经环境负载修正后,GNSS时序中的噪声主要表现为闪烁噪声+白噪声(FNWN)与幂律噪声+白噪声(PLWN),北(N)、东(E)、天(U)3个分量上噪声模型修正前后分别有约19.9%、36.5%、40.8%的噪声模型发生变化,N、E、U分量上分别有96.6%、84.5%、88.3%的测站速度不确定度减小,对垂直速度估计的最大影响可达0.5mm/a;证明环境负载修正能够提高速度估值的精度。 展开更多
关键词 时间序列 环境负载 约束最大似然估计(RmlE) 随机噪声特性分析
下载PDF
薯蓣皂苷元衍生物ML5激活NRF2信号通路改善AD的机制研究
15
作者 丁伟东 周宏磊 +2 位作者 孙佳敏 马磊 王蕊 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期534-542,共9页
通过体外和体内实验研究了薯蓣皂苷元衍生物ML5的神经保护作用,并对其机制进行了探讨。结果表明,ML5可改善β淀粉样蛋白(Aβ)所致的小鼠学习和认知障碍,保护海马区神经元;ML5具有减轻过氧化氢(H_(2)O_(2))诱导的人神经母细胞瘤细胞(SH-S... 通过体外和体内实验研究了薯蓣皂苷元衍生物ML5的神经保护作用,并对其机制进行了探讨。结果表明,ML5可改善β淀粉样蛋白(Aβ)所致的小鼠学习和认知障碍,保护海马区神经元;ML5具有减轻过氧化氢(H_(2)O_(2))诱导的人神经母细胞瘤细胞(SH-SY5Y)损伤的功效,且提高三磷酸腺苷(ATP)和线粒体膜电位的水平;免疫印迹和免疫荧光结果显示,ML5可激活核因子红细胞系2相关因子2(NRF2)信号通路,增加NRF2、血红素加氧酶-1(HO-1)及NAD(P)H醌脱氢酶(NQO-1)的表达水平。ML5可能是一种治疗阿尔茨海默症(AD)的有效药物,通过靶向NRF2通路,进而发挥抗氧化和神经保护作用。 展开更多
关键词 阿尔茨海默症 薯蓣皂苷元 ml5 NRF2 神经保护
下载PDF
Vulnerable brain regions in adolescent major depressive disorder:A resting-state functional magnetic resonance imaging activation likelihood estimation meta-analysis
16
作者 Hui Ding Qin Zhang +6 位作者 Yan-Ping Shu Bin Tian Ji Peng Yong-Zhe Hou Gang Wu Li-Yun Lin Jia-Lin Li 《World Journal of Psychiatry》 SCIE 2024年第3期456-466,共11页
BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers uniqu... BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers unique insights into the neural mechanisms underlying this condition.However,despite previous research,the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated.AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We performed a comprehensive literature search through July 12,2023,for studies investigating brain functional changes in adolescent MDD patients.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls(HCs)using ALE.RESULTS Ten studies(369 adolescent MDD patients and 313 HCs)were included.Combining the ReHo and ALFF/fALFF data,the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs(voxel size:648 mm3,P<0.05),and no brain region exhibited increased activity.Based on the ALFF data,we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients(voxel size:736 mm3,P<0.05),with no regions exhibiting increased activity.CONCLUSION Through ALE meta-analysis,we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients,increasing our understanding of the neuropathology of affected adolescents. 展开更多
关键词 Major depressive disorder Resting-state functional magnetic resonance imaging ADOLESCENT Activation likelihood estimation META-ANALYSIS
下载PDF
Multimodal abnormalities of brain structures in adolescents and young adults with major depressive disorder:An activation likelihood estimation meta-analysis
17
作者 Yan-Ping Shu Qin Zhang +4 位作者 Yong-Zhe Hou Shuang Liang Zu-Li Zheng Jia-Lin Li Gang Wu 《World Journal of Psychiatry》 SCIE 2024年第7期1106-1117,共12页
BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging ... BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies. 展开更多
关键词 Major depressive disorder ADOLESCENT Young adults NEUROIMAGING Diffusion tensor imaging Voxel-based morphometry Activation likelihood estimation META-ANALYSIS
下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
18
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization Gaussian Process Regression(GPR) Conditional likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
ML20MnTiB线材表面翘皮缺陷成因分析
19
作者 罗宇雄 《冶金设备管理与维修》 2024年第3期31-33,共3页
借助光学显微镜及扫描电镜SEM对缺陷横截面的形貌、组分等进行检测,通过氮氧分析仪对成品线材的气体含量进行检验,认为因钢中氮含量高生成的大量TiN夹杂物是导致线材表面缺陷形成的根本原因。通过对ML20MnTiB生产过程加强控制,控制钢中... 借助光学显微镜及扫描电镜SEM对缺陷横截面的形貌、组分等进行检测,通过氮氧分析仪对成品线材的气体含量进行检验,认为因钢中氮含量高生成的大量TiN夹杂物是导致线材表面缺陷形成的根本原因。通过对ML20MnTiB生产过程加强控制,控制钢中氮含量≤0.0060%,可有效控制TiN夹杂物的生成,进而避免线材表面翘皮缺陷的产生。 展开更多
关键词 ml20MnTiB 氮含量 TIN 缺陷
下载PDF
20 mL注射器针头松解治疗指屈肌腱狭窄性腱鞘炎的临床观察
20
作者 许世航 陈容容 任锡禄 《中国民间疗法》 2024年第24期53-57,共5页
目的:观察应用20 mL注射器针头松解治疗指屈肌腱狭窄性腱鞘炎的临床疗效。方法:选择30例指屈肌腱狭窄性腱鞘炎患者,均采用20 mL注射器针头松解治疗。观察并比较患者治疗前与治疗后患指掌指关节屈伸活动程度、视觉模拟评分法(VAS)评分及... 目的:观察应用20 mL注射器针头松解治疗指屈肌腱狭窄性腱鞘炎的临床疗效。方法:选择30例指屈肌腱狭窄性腱鞘炎患者,均采用20 mL注射器针头松解治疗。观察并比较患者治疗前与治疗后患指掌指关节屈伸活动程度、视觉模拟评分法(VAS)评分及治疗1周后术口恢复情况,并评估该治疗方法的治疗效果与并发症。结果:治疗后,30例患者患指掌指关节活动度大于治疗前(P<0.05),VAS评分低于治疗前(P<0.05),总有效率为100.0%(30/30)。术后1周患者术口愈合良好,无明显肿胀、疼痛,且患指屈伸活动度良好。结论:20 mL注射器针头松解治疗指屈肌腱狭窄性腱鞘炎可取得较好的临床疗效,且注射器针头松解取材方便、操作简单、创伤小,有确切的临床推广价值。 展开更多
关键词 指屈肌腱狭窄性腱鞘炎 筋伤 痹证 20 ml注射器针头 松解
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部