In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for pr...In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared.展开更多
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown cova...This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches.展开更多
The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for...The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for noise-robust VAD. The contribution of dynamic features to likelihood score can be increased via the method, which improves consequently the noise robustness of VAD. Divergence based dimension reduction method is proposed for saving computation, which reduces these feature dimensions with smaller divergence value at the cost of degrading the performance a little. Experimental results on Aurora Ⅱ database show that the detection performance in noise environments can remarkably be improved by the proposed method when the model trained in clean data is used to detect speech endpoints. Using weighting likelihood on the dimension-reduced features obtains comparable, even better, performance compared to original full-dimensional feature.展开更多
The Monte Carlo study evaluates the relative accuracy of Warm's (1989) weighted likelihood estimate (WLE) compared to the maximum likelihood estimate (MLE) using the nominal response model. And the results indi...The Monte Carlo study evaluates the relative accuracy of Warm's (1989) weighted likelihood estimate (WLE) compared to the maximum likelihood estimate (MLE) using the nominal response model. And the results indicate that WLE was more accurate than MLE.展开更多
The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation st...The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators.展开更多
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile ...This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.展开更多
In this paper we consider some related negative hypergeometric distributions arising from the problem of sampling without replacement from an urn containing balls of different colours and in different proportions but ...In this paper we consider some related negative hypergeometric distributions arising from the problem of sampling without replacement from an urn containing balls of different colours and in different proportions but stopping only after some specific number of balls of different colours have been obtained. With the aid of some simple recurrence relations and identities we obtain in the case of two colours the moments for the maximum negative hypergeometric distribution, the minimum negative hypergeometric distribution, the likelihood ratio negative hypergeometric distribution and consequently the likelihood proportional negative hypergeometric distributiuon. To the extent that the sampling scheme is applicable to modelling data as illustrated with a biological example and in fact many situations of estimating Bernoulli parameters for binary traits within a finite population, these are important first-step results.展开更多
文摘In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared.
文摘This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches.
基金Supported by the National Basic Research Program of China (973 Program) (No.2007CB311104)
文摘The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for noise-robust VAD. The contribution of dynamic features to likelihood score can be increased via the method, which improves consequently the noise robustness of VAD. Divergence based dimension reduction method is proposed for saving computation, which reduces these feature dimensions with smaller divergence value at the cost of degrading the performance a little. Experimental results on Aurora Ⅱ database show that the detection performance in noise environments can remarkably be improved by the proposed method when the model trained in clean data is used to detect speech endpoints. Using weighting likelihood on the dimension-reduced features obtains comparable, even better, performance compared to original full-dimensional feature.
文摘The Monte Carlo study evaluates the relative accuracy of Warm's (1989) weighted likelihood estimate (WLE) compared to the maximum likelihood estimate (MLE) using the nominal response model. And the results indicate that WLE was more accurate than MLE.
文摘The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401048, 11301037, 11571051 and 11201174)the Natural Science Foundation for Young Scientists of Jilin Province of China (Grant Nos. 20150520055JH and 20150520054JH)
文摘This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.
文摘In this paper we consider some related negative hypergeometric distributions arising from the problem of sampling without replacement from an urn containing balls of different colours and in different proportions but stopping only after some specific number of balls of different colours have been obtained. With the aid of some simple recurrence relations and identities we obtain in the case of two colours the moments for the maximum negative hypergeometric distribution, the minimum negative hypergeometric distribution, the likelihood ratio negative hypergeometric distribution and consequently the likelihood proportional negative hypergeometric distributiuon. To the extent that the sampling scheme is applicable to modelling data as illustrated with a biological example and in fact many situations of estimating Bernoulli parameters for binary traits within a finite population, these are important first-step results.