Terpenoids are the main components contributing to the fragrance of Lilium‘Siberia’,and LiTPS2 plays a critical role in the biosynthesis of monoterpenoids.Although the major terpene synthases in Lilium‘Siberia’hav...Terpenoids are the main components contributing to the fragrance of Lilium‘Siberia’,and LiTPS2 plays a critical role in the biosynthesis of monoterpenoids.Although the major terpene synthases in Lilium‘Siberia’have been identified,how these TPS genes are transcriptionally regulated remains elusive in this distinguished flower.This study aimed to identify transcription factors that regulate the terpene synthesis in Lilium,and disclose the related underlying transcriptional regulation mechanism.In this study,we identified three R2R3-MYB TFs—LiMYB1,LiMYB305 and LiMYB330,which were involved in regulating the biosynthesis of terpenes in Lilium‘Siberia’.Quantitative real-time PCR showed spatial and temporal expression patterns consistent with the emission patterns of terpene compounds.When LiMYB1,LiMYB305 and LiMYB330were overexpressed in flowers,the release of some main monoterpenes,such as linalool and ocimene,as well as the expression of TPS genes,especially for LiTPS2,were enhanced.A virus-induced gene silencing(VIGS)assay showed that silencing these three LiMYBs decreased the level of monoterpenes by down-regulating the expression of the TPS genes.The yeast one-hybrid and transient expression assays indicated that all three LiMYBs could bind to and activate the promoter of LiTPS2.Moreover,the yeast two-hybrid assay verified that LiMYB1 could interact with LiMYB308 and LiMYB330,indicating their synergistic roles in the regulation of floral terpene biosynthesis.In general,these results indicated that LiMYB1,LiMYB305,and LiMYB330 might play essential roles in terpene biosynthesis in Lilium and would provide a new perspective for the transcriptional regulation of volatile terpenes in flowers.展开更多
Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this ...Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.展开更多
Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could h...Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could help solve this problem.LoMYB21,encoding a putative R2R3v-myb avian myeloblastosis viral oncogene homolog(MYB)transcription factor,was identified from oriental lilies(Lilium‘Siberia’).Real-time quantitative PCR analysis showed that LoMYB21 was mainly expressed in the anther,filament and stigma and had high expression during the late stages of lily anther development.LoMYB21 had transactivation activity and was located in the nucleus through yeast one-hybrid assays and transient expression in Nicotiana benthamiana.Suppression of LoMYB21 by virus-induced gene silencing(VIGS)in Lilium‘Siberia’led to anther indehiscence and reduced the expression of genes related to Jasmonate acid(JA)biosynthesis and signal transduction.Induction of LoMYB21 in DEX::LoMYB21 transgenic Arabidopsis caused procumbent inflorescences that became infertile,accompanied by higher expression of JA biosynthetic and signaling genes.These results demonstrated that JA content and signaling were abnormal in silenced lily and transgenic LoMYB21 Arabidopsis,which affected anther development.Our study indicated that LoMYB21 could regulate lily anther dehiscence through JA biosynthesis and signaling during the late stages of anther development.展开更多
The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport...The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport of xylem.In this study,the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section.Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated.Then,the transport rule of 5(6)-Carboxyfluorescein diacetate(CFDA)in the xylem of the stem of L.lancifolium was studied by fluorescence dye in live cells tracer technology.The results showed that the vascular bundles of L.lancifolium were scattered in the basic tissue,the peripheral vascular bundles were smaller and densely distributed,and the closer to the center,the larger the volume of vascular bundles and the more sparsely distributed.The vascular bundles of L.lancifolium are limited external tenacity vascular bundles,which are composed of phloem and xylem.The most suitable method for CFDA labeling the xylem of isolated stem segments of L.lancifolium was solution soaking for 24 h.The running speed of CF in the isolated stem was 0.3 cm/h,which was consistent with the running speed of the material in the field.CF could be transported between the xylem and parenchyma cells,indicating that the material transport in the xylem could be through the symplastic pathway.The above results laid a foundation for the study of the xylem transport mechanism and the xylem pathogen disease of lily.展开更多
The objective of our study was to lay a foundation for the effect of flower flagrance on human emotions and to provide a theory for the choice of indoor plants and the improvement of the olfactory environment. Specifi...The objective of our study was to lay a foundation for the effect of flower flagrance on human emotions and to provide a theory for the choice of indoor plants and the improvement of the olfactory environment. Specifically, our purpose was to study human physiological responses to flower fragrance of Lilium 'Siberia' and Rosa 'Escimo'. The participants were 31 college students. Blood pressure, pulse rate, finger temperature (FT) and galvanic skin response (GSR) were measured. The results show that the fragrance of Rosa 'Escimo' causes the diastolic pressure and pulse rate of the participants to reduce significantly. The average decrease was 0.37 kPa and 2.23 beats per minute, which indicates that sympathetic nervous activity increases, physiological arousal decreases and emotional alleviation occurs. Furthermore, the GSR of participants significantly increased by smelling the fragrance of Lilium 'Siberia', indicating that both sympathetic nervous activity and physiological arousal increased. But the data could not prove that flower fragrance stimulation has an effect on changes in systolic pressure and finger temperature. Some other factors, such as basic emotion and weather, may have an effect.展开更多
An analysis of the changes in vegetation cover on the territory of the Republic of Khakassia in 2000–2021 due to climatic trends was carried out based on the MODIS data.The changes in vegetation cover were estimated ...An analysis of the changes in vegetation cover on the territory of the Republic of Khakassia in 2000–2021 due to climatic trends was carried out based on the MODIS data.The changes in vegetation cover were estimated based on trends in Normalized Difference Vegetation Index(NDVI)and Enhanced Vegetation Index(EVI).In general,in the 21st century,an increase in the biomass of vegetation cover is observed.Positive trends were observed in 16%–22%of the territory,and negative only in 1%–3%.For about 20%of the analyzed territory,a significant influence of climate on the changes in vegetation cover was revealed.The most pronounced negative impact on vegetation cover was caused by summer air and soil temperatures,spring temperature,and summer winds,and the positive impact was caused by summer precipitation and soil moisture.The response of the vegetation cover to climate was non-uniform concerning the topography.Thus,a significant correlation with the amount of precipitation was observed for~20%–35%of vegetation growing below 600 m above sea level and for less than 5%above this elevation.The negative effect of summer temperatures on plants prevailed mainly at an elevation below~1400 m above sea level.Projected climate change is likely to lead to significant degradation of vegetation in the steppe and foreststeppe in Khakassia in the coming decades.展开更多
基金supported by Beijing Natural Science Foundation,China(Grant No.6202022)National Natural Science Foundation of China,China(Grant No.31971708)National Key Research and Development Program of China(Grant No.2019YFD1001002)。
文摘Terpenoids are the main components contributing to the fragrance of Lilium‘Siberia’,and LiTPS2 plays a critical role in the biosynthesis of monoterpenoids.Although the major terpene synthases in Lilium‘Siberia’have been identified,how these TPS genes are transcriptionally regulated remains elusive in this distinguished flower.This study aimed to identify transcription factors that regulate the terpene synthesis in Lilium,and disclose the related underlying transcriptional regulation mechanism.In this study,we identified three R2R3-MYB TFs—LiMYB1,LiMYB305 and LiMYB330,which were involved in regulating the biosynthesis of terpenes in Lilium‘Siberia’.Quantitative real-time PCR showed spatial and temporal expression patterns consistent with the emission patterns of terpene compounds.When LiMYB1,LiMYB305 and LiMYB330were overexpressed in flowers,the release of some main monoterpenes,such as linalool and ocimene,as well as the expression of TPS genes,especially for LiTPS2,were enhanced.A virus-induced gene silencing(VIGS)assay showed that silencing these three LiMYBs decreased the level of monoterpenes by down-regulating the expression of the TPS genes.The yeast one-hybrid and transient expression assays indicated that all three LiMYBs could bind to and activate the promoter of LiTPS2.Moreover,the yeast two-hybrid assay verified that LiMYB1 could interact with LiMYB308 and LiMYB330,indicating their synergistic roles in the regulation of floral terpene biosynthesis.In general,these results indicated that LiMYB1,LiMYB305,and LiMYB330 might play essential roles in terpene biosynthesis in Lilium and would provide a new perspective for the transcriptional regulation of volatile terpenes in flowers.
基金National Natural Sciences Foundation of China(31760586).
文摘Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.
基金funded by National Key R&D Program of China(Grant Nos.2020YFD1000402,2018YFD1000400)Chinese Universities Scientific Fund(Grant Nos.2021TC102,2018QC096).
文摘Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could help solve this problem.LoMYB21,encoding a putative R2R3v-myb avian myeloblastosis viral oncogene homolog(MYB)transcription factor,was identified from oriental lilies(Lilium‘Siberia’).Real-time quantitative PCR analysis showed that LoMYB21 was mainly expressed in the anther,filament and stigma and had high expression during the late stages of lily anther development.LoMYB21 had transactivation activity and was located in the nucleus through yeast one-hybrid assays and transient expression in Nicotiana benthamiana.Suppression of LoMYB21 by virus-induced gene silencing(VIGS)in Lilium‘Siberia’led to anther indehiscence and reduced the expression of genes related to Jasmonate acid(JA)biosynthesis and signal transduction.Induction of LoMYB21 in DEX::LoMYB21 transgenic Arabidopsis caused procumbent inflorescences that became infertile,accompanied by higher expression of JA biosynthetic and signaling genes.These results demonstrated that JA content and signaling were abnormal in silenced lily and transgenic LoMYB21 Arabidopsis,which affected anther development.Our study indicated that LoMYB21 could regulate lily anther dehiscence through JA biosynthesis and signaling during the late stages of anther development.
基金the National Natural Science Foundation of China(31902043,32172612).
文摘The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport of xylem.In this study,the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section.Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated.Then,the transport rule of 5(6)-Carboxyfluorescein diacetate(CFDA)in the xylem of the stem of L.lancifolium was studied by fluorescence dye in live cells tracer technology.The results showed that the vascular bundles of L.lancifolium were scattered in the basic tissue,the peripheral vascular bundles were smaller and densely distributed,and the closer to the center,the larger the volume of vascular bundles and the more sparsely distributed.The vascular bundles of L.lancifolium are limited external tenacity vascular bundles,which are composed of phloem and xylem.The most suitable method for CFDA labeling the xylem of isolated stem segments of L.lancifolium was solution soaking for 24 h.The running speed of CF in the isolated stem was 0.3 cm/h,which was consistent with the running speed of the material in the field.CF could be transported between the xylem and parenchyma cells,indicating that the material transport in the xylem could be through the symplastic pathway.The above results laid a foundation for the study of the xylem transport mechanism and the xylem pathogen disease of lily.
基金supported by the National Natural Science Foundation of China [grant numbers 41991281 and 41675083]Fundamental Research Funds of Institute of Atmospheric PhysicsChinese Academy of Sciences [grant number E3680218]。
基金supported by the National Key Technology R&D Program of the Eleventh Five-Year Plan of China (2006BAD07B09)
文摘The objective of our study was to lay a foundation for the effect of flower flagrance on human emotions and to provide a theory for the choice of indoor plants and the improvement of the olfactory environment. Specifically, our purpose was to study human physiological responses to flower fragrance of Lilium 'Siberia' and Rosa 'Escimo'. The participants were 31 college students. Blood pressure, pulse rate, finger temperature (FT) and galvanic skin response (GSR) were measured. The results show that the fragrance of Rosa 'Escimo' causes the diastolic pressure and pulse rate of the participants to reduce significantly. The average decrease was 0.37 kPa and 2.23 beats per minute, which indicates that sympathetic nervous activity increases, physiological arousal decreases and emotional alleviation occurs. Furthermore, the GSR of participants significantly increased by smelling the fragrance of Lilium 'Siberia', indicating that both sympathetic nervous activity and physiological arousal increased. But the data could not prove that flower fragrance stimulation has an effect on changes in systolic pressure and finger temperature. Some other factors, such as basic emotion and weather, may have an effect.
基金supported by a grant from the Russian Science Foundation(No.22-17-20012)(https://rscf.ru/project/22-17-20012)with equal financial support from the Government of the Republic of Khakassia。
文摘An analysis of the changes in vegetation cover on the territory of the Republic of Khakassia in 2000–2021 due to climatic trends was carried out based on the MODIS data.The changes in vegetation cover were estimated based on trends in Normalized Difference Vegetation Index(NDVI)and Enhanced Vegetation Index(EVI).In general,in the 21st century,an increase in the biomass of vegetation cover is observed.Positive trends were observed in 16%–22%of the territory,and negative only in 1%–3%.For about 20%of the analyzed territory,a significant influence of climate on the changes in vegetation cover was revealed.The most pronounced negative impact on vegetation cover was caused by summer air and soil temperatures,spring temperature,and summer winds,and the positive impact was caused by summer precipitation and soil moisture.The response of the vegetation cover to climate was non-uniform concerning the topography.Thus,a significant correlation with the amount of precipitation was observed for~20%–35%of vegetation growing below 600 m above sea level and for less than 5%above this elevation.The negative effect of summer temperatures on plants prevailed mainly at an elevation below~1400 m above sea level.Projected climate change is likely to lead to significant degradation of vegetation in the steppe and foreststeppe in Khakassia in the coming decades.
基金supported by the National Natural Science Foundation of China[grant numbers 41991280 and 42025502]the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004]the State Scholarship Fund by China Scholarship Council[grant number 202109045003].