AIM:To evaluate the midterm outcomes of penetrating keratoplasty(PK)following allogeneic cultivated limbal epithelial transplantation(CLET)for bilateral total limbal stem cell deficiency(LSCD).METHODS:Ten patients(10 ...AIM:To evaluate the midterm outcomes of penetrating keratoplasty(PK)following allogeneic cultivated limbal epithelial transplantation(CLET)for bilateral total limbal stem cell deficiency(LSCD).METHODS:Ten patients(10 eyes)with bilateral LSCD were enrolled in this prospective noncomparative case series study.Each participant underwent PK approximately 6 mo after a CLET.Topical tacrolimus,topical and systemic steroids,and oral ciclosporin were administered postoperatively.Best-corrected visual acuity(BCVA),intraocular pressure(IOP),ocular surface grading scores(OSS),corneal graft epithelial rehabilitation,persistent epithelial defect(PED),immunological rejection,and graft survival rate were assessed.RESULTS:The time interval between PK and allogeneic CLET was 6.90±1.29(6-10)mo.BCVA improved from 2.46±0.32 log MAR preoperatively to 0.77±0.55 log MAR post-PK(P<0.001).Kaplan-Meier analysis of mean graft survival revealed graft survival rates of 100%at 12 and 24 mo and 80.0%at 36 mo.PEDs appeared in 5 eyes at different periods post-PK,and graft rejection occurred in 4 eyes.The total OSS decreased from 12.4±4.4 before allogeneic CLET to 1.4±1.51 after PK.CONCLUSION:A sequential therapy design of PK following allogeneic CLET can maintain a stable ocular surface with improved BCVA despite the relatively high graft rejection rate.展开更多
Cornea serves as the partial front barrier and major light reflection organ of the eye.The integrity of corneal surface is essential for ocular function.Injuries or congenital diseases could significantly destruct the...Cornea serves as the partial front barrier and major light reflection organ of the eye.The integrity of corneal surface is essential for ocular function.Injuries or congenital diseases could significantly destruct the homeostasis of the ocular surface,especially the microenvironment of limbal epithelial stem cells(LESCs),and will eventually cause dysfunction of corneal regeneration and diminish of LESCs.The loss of LESCs by different reasons are named limbal stem cell deficiency(LSCD),which is one of the leading cause of vision loss worldwide.To restore the corneal surface,LESC transplantation in the form of tissue or cell cultures is currently a viable and promising method to treat LSCD.In this review,we aim to introduce the characters and niche of LESCs,and discuss different aspects of its application in cornea surface reconstruction.展开更多
Limbal stem cell deficiency(LSCD)causes severe vision impairment and can lead to blindness,representing one of the most challenging ocular surface disorders.Stem cell deficiency can be congenital or,more often,acquire...Limbal stem cell deficiency(LSCD)causes severe vision impairment and can lead to blindness,representing one of the most challenging ocular surface disorders.Stem cell deficiency can be congenital or,more often,acquired.The categorization of ocular surface transplantation techniques is crucial to achieving treatment homogeneity and quality of care,according to the anatomic source of the tissue being transplanted,genetic source,autologous or allogenic transplantation(to reflect histocompatibility in the latter group),and cell culture and tissue engineering techniques.The aim of this minireview is to provide a summary of the management of LSCD,from clinical characteristics and therapeutic outcomes to the development of novel therapeutic approaches.The manuscript also briefly summarizes recent findings in the current literature and outlines the future challenges to overcome in the management of the major types of ocular surface failure.展开更多
AIM:To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts,and an acellular porcine cornea matrix(APCM) in vitro.·METHODS:The scaffold w...AIM:To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts,and an acellular porcine cornea matrix(APCM) in vitro.·METHODS:The scaffold was prepared from fresh porcine corneas which were treated with 0.5%sodium dodecyl sulfate(SDS)solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin(HE)staining and 4’,6-diamidino-2-phenylindole(DAPI)staining.Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM,and then cell proliferative ability was evaluated by MTT assay.To construct a human corneal anterior lamellar replacement,corneal fibroblasts were injected into the APCM and cultured for 3d,followed by culturing corneal epithelial cells on the stroma construction surface for another 10d.The corneal replacement was analyzed by HE staining,and immunofluorescence staining.·R ESULTS:Histological examination indicated that there were no cells in the APCM by HE staining,and DAPI staining did not detect any residual DNA.The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells.At 10d,a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed,and the injected corneal fibroblasts distributed within the scaffold.The phenotype of the construction was similar to normal human corneas,with high expression of cytokeratin 12 in the epithelial cell layer and high expression of Vimentin in the stroma.·CONCLUSION:Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix.This laid the foundation for the further transplantation in vitro.展开更多
AIM: To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell mar...AIM: To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell markers. METHODS: Thirty limbal rims were split into 4 parts and stored in corneal preservation medium at 4 degrees C for 0, 1, 4, or 7 days. The limbal stem cell and mitotic markers P63, CK19, proliferating cell nuclear antigen (PCNA), and Ki67 were determined by immunohistochemical staining. The proliferative potential of limbal epithelial cells was assessed by cell viability, the ability of generating stratified epithelium, and colony forming assay. RESULTS: The stored tissues maintained limbal stratified structure to 7 days and exhibited comparable expression level of stem cell and mitotic markers. The proportion of viable cells decreased with the prolonged preservation time, while colony forming efficiency decreased from the 1st day and disappeared at the 4th day. When inoculated on amniotic membrane, the cells preserved for 1 day formed a stratified epithelium, while the cells from 4 days' preservation formed a discontinuous layer. CONCLUSION: The colony forming efficiency of limbal epithelial stem/progenitor cells decreased rapidly with the increasing preservation time, while the expression level of markers and capacity of forming epithelial monolayer on amniotic membrane decreased gradually. The limbal epithelial stem cells lost their function earlier than the lost expression level of stem cell markers. This may help us to better choose the appropriate preservation grafts for future limbal stem cell transplantation.展开更多
Background and Objective:Limbal stem cell deficiency(LSCD)is characterized by the insufficiency of limbal stem cells to maintain the corneal epithelium.Severe cases of LSCD may be treated with limbal transplantation f...Background and Objective:Limbal stem cell deficiency(LSCD)is characterized by the insufficiency of limbal stem cells to maintain the corneal epithelium.Severe cases of LSCD may be treated with limbal transplantation from healthy autologous or allogeneic limbal tissue.Multiple cell-based therapies have been studied as alternative treatments to improve success rates and minimize immunosuppressive regimens after allogeneic transplants.In this review,we describe the success rates,and complications of different cell-based therapies for LSCD.We also discuss each therapy’s relative strengths and weaknesses,their history in animal and human studies,and their effectiveness compared to traditional transplants.Methods:PubMed was searched for publications using the terms LSCD,cell-based therapy,cultivated limbal epithelial transplantation(CLET),cultivated oral mucosal epithelial transplantation(COMET),and mesenchymal stem cells from 1989 to August 2022.Inclusion criteria were English language articles.Exclusion criteria were non-English language articles.Key Content and Findings:current cell-based therapies for LSCD are CLET and non-limbal epithelial cells.Non-limbal epithelial cell methods include COMET,conjunctival epithelial autografts,and mesenchymal stem/stromal cells(MSCs).Moreover,several alternative potential sources of non-limbal cells have described,including induced pluripotent stem cells(iPSCs),human embryonic stem cells(hESCs),human dental pulp stem cells,hair follicle bulge-derived epithelial stem cells,amniotic membrane epithelial cells,and human umbilical cord lining epithelial cells.Conclusions:Cell-based therapies are a promising treatment modality for LSCD.While CLET is currently the only approved cell-based therapy and is only approved in the European Union,more novel methods have also been shown to be effective in human or animal studies thus far.Non-limbal epithelial cells such as COMET are also an alternative treatment to allogeneic transplants especially as a surface stabilizing procedure.iPSCs are currently being studied in early phase trials and have the potential to revolutionize the way LSCD is treated.Lastly,cell-based therapies for restoring the limbal niche such as mesenchymal stem cells have also shown promising results in the first human proof-of-concept study.Several potential sources of non-limbal cells are under investigation.展开更多
文摘AIM:To evaluate the midterm outcomes of penetrating keratoplasty(PK)following allogeneic cultivated limbal epithelial transplantation(CLET)for bilateral total limbal stem cell deficiency(LSCD).METHODS:Ten patients(10 eyes)with bilateral LSCD were enrolled in this prospective noncomparative case series study.Each participant underwent PK approximately 6 mo after a CLET.Topical tacrolimus,topical and systemic steroids,and oral ciclosporin were administered postoperatively.Best-corrected visual acuity(BCVA),intraocular pressure(IOP),ocular surface grading scores(OSS),corneal graft epithelial rehabilitation,persistent epithelial defect(PED),immunological rejection,and graft survival rate were assessed.RESULTS:The time interval between PK and allogeneic CLET was 6.90±1.29(6-10)mo.BCVA improved from 2.46±0.32 log MAR preoperatively to 0.77±0.55 log MAR post-PK(P<0.001).Kaplan-Meier analysis of mean graft survival revealed graft survival rates of 100%at 12 and 24 mo and 80.0%at 36 mo.PEDs appeared in 5 eyes at different periods post-PK,and graft rejection occurred in 4 eyes.The total OSS decreased from 12.4±4.4 before allogeneic CLET to 1.4±1.51 after PK.CONCLUSION:A sequential therapy design of PK following allogeneic CLET can maintain a stable ocular surface with improved BCVA despite the relatively high graft rejection rate.
基金This research is funded by Science and Technology Planning Project of Guangdong Province(No.2015B020226003).
文摘Cornea serves as the partial front barrier and major light reflection organ of the eye.The integrity of corneal surface is essential for ocular function.Injuries or congenital diseases could significantly destruct the homeostasis of the ocular surface,especially the microenvironment of limbal epithelial stem cells(LESCs),and will eventually cause dysfunction of corneal regeneration and diminish of LESCs.The loss of LESCs by different reasons are named limbal stem cell deficiency(LSCD),which is one of the leading cause of vision loss worldwide.To restore the corneal surface,LESC transplantation in the form of tissue or cell cultures is currently a viable and promising method to treat LSCD.In this review,we aim to introduce the characters and niche of LESCs,and discuss different aspects of its application in cornea surface reconstruction.
文摘Limbal stem cell deficiency(LSCD)causes severe vision impairment and can lead to blindness,representing one of the most challenging ocular surface disorders.Stem cell deficiency can be congenital or,more often,acquired.The categorization of ocular surface transplantation techniques is crucial to achieving treatment homogeneity and quality of care,according to the anatomic source of the tissue being transplanted,genetic source,autologous or allogenic transplantation(to reflect histocompatibility in the latter group),and cell culture and tissue engineering techniques.The aim of this minireview is to provide a summary of the management of LSCD,from clinical characteristics and therapeutic outcomes to the development of novel therapeutic approaches.The manuscript also briefly summarizes recent findings in the current literature and outlines the future challenges to overcome in the management of the major types of ocular surface failure.
基金Supported by the National Natural Science Foundation of China(No.81271716)
文摘AIM:To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts,and an acellular porcine cornea matrix(APCM) in vitro.·METHODS:The scaffold was prepared from fresh porcine corneas which were treated with 0.5%sodium dodecyl sulfate(SDS)solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin(HE)staining and 4’,6-diamidino-2-phenylindole(DAPI)staining.Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM,and then cell proliferative ability was evaluated by MTT assay.To construct a human corneal anterior lamellar replacement,corneal fibroblasts were injected into the APCM and cultured for 3d,followed by culturing corneal epithelial cells on the stroma construction surface for another 10d.The corneal replacement was analyzed by HE staining,and immunofluorescence staining.·R ESULTS:Histological examination indicated that there were no cells in the APCM by HE staining,and DAPI staining did not detect any residual DNA.The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells.At 10d,a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed,and the injected corneal fibroblasts distributed within the scaffold.The phenotype of the construction was similar to normal human corneas,with high expression of cytokeratin 12 in the epithelial cell layer and high expression of Vimentin in the stroma.·CONCLUSION:Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix.This laid the foundation for the further transplantation in vitro.
基金National Natural Science Foundation of China (No.81170816)Specialized Research Fund for the Doctoral Program of Higher Education (No.20113706110004)Qingjun Zhou is partially supported by the TaishanScholar Program of Jinan City, China (No.20081148)
文摘AIM: To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell markers. METHODS: Thirty limbal rims were split into 4 parts and stored in corneal preservation medium at 4 degrees C for 0, 1, 4, or 7 days. The limbal stem cell and mitotic markers P63, CK19, proliferating cell nuclear antigen (PCNA), and Ki67 were determined by immunohistochemical staining. The proliferative potential of limbal epithelial cells was assessed by cell viability, the ability of generating stratified epithelium, and colony forming assay. RESULTS: The stored tissues maintained limbal stratified structure to 7 days and exhibited comparable expression level of stem cell and mitotic markers. The proportion of viable cells decreased with the prolonged preservation time, while colony forming efficiency decreased from the 1st day and disappeared at the 4th day. When inoculated on amniotic membrane, the cells preserved for 1 day formed a stratified epithelium, while the cells from 4 days' preservation formed a discontinuous layer. CONCLUSION: The colony forming efficiency of limbal epithelial stem/progenitor cells decreased rapidly with the increasing preservation time, while the expression level of markers and capacity of forming epithelial monolayer on amniotic membrane decreased gradually. The limbal epithelial stem cells lost their function earlier than the lost expression level of stem cell markers. This may help us to better choose the appropriate preservation grafts for future limbal stem cell transplantation.
基金supported by the National Eye Institute/National Institutes of Health and the Core Grant for Vision Research[R01 EY024349(ARD),UH3 EY031809(ARD),EY01792]Department of Defense Vision Research Program–Congressionally Directed Medical Research Program[VR170180]Research to Prevent Blindness Unrestricted Grant to the department and Physician-Scientist Award.
文摘Background and Objective:Limbal stem cell deficiency(LSCD)is characterized by the insufficiency of limbal stem cells to maintain the corneal epithelium.Severe cases of LSCD may be treated with limbal transplantation from healthy autologous or allogeneic limbal tissue.Multiple cell-based therapies have been studied as alternative treatments to improve success rates and minimize immunosuppressive regimens after allogeneic transplants.In this review,we describe the success rates,and complications of different cell-based therapies for LSCD.We also discuss each therapy’s relative strengths and weaknesses,their history in animal and human studies,and their effectiveness compared to traditional transplants.Methods:PubMed was searched for publications using the terms LSCD,cell-based therapy,cultivated limbal epithelial transplantation(CLET),cultivated oral mucosal epithelial transplantation(COMET),and mesenchymal stem cells from 1989 to August 2022.Inclusion criteria were English language articles.Exclusion criteria were non-English language articles.Key Content and Findings:current cell-based therapies for LSCD are CLET and non-limbal epithelial cells.Non-limbal epithelial cell methods include COMET,conjunctival epithelial autografts,and mesenchymal stem/stromal cells(MSCs).Moreover,several alternative potential sources of non-limbal cells have described,including induced pluripotent stem cells(iPSCs),human embryonic stem cells(hESCs),human dental pulp stem cells,hair follicle bulge-derived epithelial stem cells,amniotic membrane epithelial cells,and human umbilical cord lining epithelial cells.Conclusions:Cell-based therapies are a promising treatment modality for LSCD.While CLET is currently the only approved cell-based therapy and is only approved in the European Union,more novel methods have also been shown to be effective in human or animal studies thus far.Non-limbal epithelial cells such as COMET are also an alternative treatment to allogeneic transplants especially as a surface stabilizing procedure.iPSCs are currently being studied in early phase trials and have the potential to revolutionize the way LSCD is treated.Lastly,cell-based therapies for restoring the limbal niche such as mesenchymal stem cells have also shown promising results in the first human proof-of-concept study.Several potential sources of non-limbal cells are under investigation.