Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and sal...Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.展开更多
To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanis...To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed.展开更多
Mortars provide the continuity required for the stability and exclusion of weather elements in masonry assemblies. But because of the heterogeneity of the mortar, its mechanism of behaviour under different load effect...Mortars provide the continuity required for the stability and exclusion of weather elements in masonry assemblies. But because of the heterogeneity of the mortar, its mechanism of behaviour under different load effects is dependent on the properties of the constituents of the mortar. The aim of paper is to determine the effect sand grading for various cement-sand-lime mortar designations (BS) and strength classes (EC) on the compressive strength and stiffness of mortar. Two silica sands;HST 95 and HST60 were used to make mortars in three strength classes: M2, M4 and M6, corresponding to mortar designations iv, iii and ii respectively. The results show that mortar made with the HST60 sand (coarser grading) usually resulted in mortar with a higher compressive strength and stiffness. The One Way ANOVA analysis of both compressive strength and stiffness at a significance level of 5% on the effect of sand grading on the two parameters also shows that they are both significant. There is also strong evidence of a linear correlation between the stiffness and compressive strength. The results indicate that in order to replicate full scale behaviour of masonry at model scales, the grading of fine aggregate in the models should be similar so as to properly model full scale behavior.展开更多
Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible fo...Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering.展开更多
Lime-fly ash loess is composed of fly ash, lime and loess. It is a new material in subgrade backfill. Main factors to influence the strength of lime-fly ash loess are age, amount of fly ash and lime, ratio of fly ash ...Lime-fly ash loess is composed of fly ash, lime and loess. It is a new material in subgrade backfill. Main factors to influence the strength of lime-fly ash loess are age, amount of fly ash and lime, ratio of fly ash to lime (1:K), and moisture content. In order to observe the effect of each factor influencing the strength of lime-fly ash loess and find out the relationship between each other, this paper adopted orthogonal test design to conduct unconfined compression tests. The result shows that 90d strength can be considered to calculate the strength of lime-fly ash loess in practice. And the most important factor to influence the 90d strength of lime-fly ash loess is the amount of fly ash and lime, the second is moisture content, and then is the ratio of fly ash to lime (1:K). These achievements are significant to the design and application of lime-fly ash loess in subgrade construction of loess areas.展开更多
The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric ...The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric analysis was used to characterize the various stabilizers and the clay used, and tests of resistance and water absorption were also carried out. The clay was found to be an aluminosilicate (15.55% to 17.17% Al2O3 and 42.12% to 44.15% SiO2). The lime contains 90.84% CaO and the cement has 17.80% SiO2, 3.46% Al2O3, 2.43% Fe2O3 and 58.47% CaO in the combined form of tricalcium silicate, dicalcium silicate, tricalcium aluminate and ferro-tetra calcium aluminate. The results showed that the insertion of locally available stabilizers (lime and cement) improved the strength of the material by almost 80% when the lime was increased from 0% to 14% for 14 days. For compressed cement, a 65% increase in strength was observed under the same conditions. Strength increases with drying time, with a 52% increase in strength at 28 days compared to 14 days. Furthermore, compressed cement bricks have a more compact structure, absorbing very little water (32%). In view of all these results, cement appears to be the best stabilizer, and compression improves compressive strength and reduces water absorption.展开更多
The soil of the Guabirotuba geological formation(Paraná Basin, Brazil) has physico-mechanical properties which are not suitable for its utilization in pavement construction, in protection of hillsides and slope...The soil of the Guabirotuba geological formation(Paraná Basin, Brazil) has physico-mechanical properties which are not suitable for its utilization in pavement construction, in protection of hillsides and slopes, or as shallow foundation support. Treatment of this soil by lime addition would improve its usability. The present context intends to determine the ratio between the splitting tensile strength(q;)and the unconfined compressive strength(q;) of clayey soil in the metropolitan region of Curitiba City,which has been treated with different lime contents and curing times. The control parameters evaluated include lime content(L), curing time(t), moisture content(w), and ratio of porosity to volumetric lime content(η/L;). It was observed that the q;/q;ratio is between 0.17 and 0.2 in relation to the curing time,and an exponential relation exists between them. Meanwhile, the unconfined compressive strength of lime-treated soil was found to be approximately four times the initial value.展开更多
This experimental research is focused on the effect of concrete made by incorporating lime treated Palm Kernel Shell (PKS) & Sugarcane Bagasse Ash (SCBA) as partial replacements of coarse aggregates and Ordinary P...This experimental research is focused on the effect of concrete made by incorporating lime treated Palm Kernel Shell (PKS) & Sugarcane Bagasse Ash (SCBA) as partial replacements of coarse aggregates and Ordinary Portland Cement (OPC) respectively. An experimental analysis for concrete grade 30 with a mix design ratio of 1:1.97:3.71 of cement:fine aggregates:coarse aggregates with a constant water to cement ratio of 0.5, was used. Physical tests such as workability on fresh concrete and water absorption on hardened concrete of each batch were carried out. Mechanical tests like compressive strength and split tensile strength were carried out on hardened concrete cubes (100 mm × 100 mm × 100 mm) and cylinders (100 mm × 200 mm) at 7 and 28 days. The experimental results obtained in this study indicate the possibility of using up 15% of lime treated PKS and 10% of SCBA for production of structural concrete.展开更多
Curing of cement based products such as concrete and mortar, is very important to achieve good strength and durable products. However the curing environment plays a pivotal role in the overall quality of cement based ...Curing of cement based products such as concrete and mortar, is very important to achieve good strength and durable products. However the curing environment plays a pivotal role in the overall quality of cement based products in terms of strength development. ASTM C192 allows moist curing either in a fog room or under water. However, these must meet ASTM C511 which controls temperature, and specifically for water curing, the concentration of calcium ions in the curing solution. Unfortunately in many parts of the world, water curing literally means curing in tap water. This is done primarily because there is a lack of knowledge or ignorance regarding the mobility and roll of calcium hydroxide in the curing process. To illustrate the differences, in this study, straight ASTM Type I/II Portland cement and that mixed with powdered waste clay bricks as a cement extender were used to prepare two different batches of mortars. The chemical properties of the powdered waste clay brick met the ASTM C618 standard specifications for Class N pozzolans. Both mortar specimens were cured under two different environment comprising of either water and lime saturated water. Mortar specimens were tested for compressive strength at 3, 7, 14 and 28 days of either curing conditions. Test results indicated that mortar specimens cured in lime saturated water obtained higher strength than those cured in fresh water at all ages of curing. Statistical inference drawn from ANOVA testing showed that curing conditions had significant impact on strength development of the blended and unblended cement systems. The study recommends that testing of concrete and mortar samples and other research related works be performed in lime saturated water other than fresh water.展开更多
Lime concrete and lime treatment are two attractive techniques for geotechnical engineers.However,researches have rarely been carried out to study the effects of moisture and capillary action due to increasing groundw...Lime concrete and lime treatment are two attractive techniques for geotechnical engineers.However,researches have rarely been carried out to study the effects of moisture and capillary action due to increasing groundwater level on geotechnical properties of lime concrete.The aim of this study is to investigate the effects of curing time and degree of saturation on some of geotechnical properties of lime concrete such as unconfined compressive strength(UCS),secant modulus(ES),failure strain,brittleness index(IB),and deformability index(ID) using unconfined compression tests.First of all,geotechnical and chemical properties of used materials were determined.After curing times of 14 d,28 d,45 d,and 60 d in laboratory condition,the specimens were exposed to saturation levels ranging from 0 to 100%.The results showed that the moisture and curing time have significant effects on the properties of lime concrete.Based on the results of scanning electron micrograph(SEM) test,it was observed that the specimen was characterized by a rather well-structured matrix since both the filling of a large proportion of the coarse-grained soil voids by clay and the pozzolanic activity of lime led to retaining less pore water in the specimen,increasing the UCS and ES,and consequently resisting against swelling and shrinkage of the clay soil.Moreover,due to the pozzolanic reactions and reduction of water,by increasing the curing time and decreasing the degrees of saturation,UCS,ES,and IBincreased,and IDdecreased.Based on the experimental results,a phenomenological model was used to develop equations for predicting the properties in relation to the ratio of degree of saturation/curing time.The results showed that there was a good correlation(almost R2> 90%) between the measured parameters and the estimated ones given by the predicted equations.展开更多
The present discussion aims at complementing the original work published by Baldovino et al.(2018) by outlining a novel point of view. In light of the inherent limitations associated with the empirical model suggested...The present discussion aims at complementing the original work published by Baldovino et al.(2018) by outlining a novel point of view. In light of the inherent limitations associated with the empirical model suggested in the original article, the dimensional analysis technique was introduced to the soil-lime strength problem, thereby leading to the development of simple and physically meaningful dimensional models capable of predicting the unconfined compressive and splitting tensile strengths of compacted soil-lime mixtures as a function of the mixture's index properties, i.e. lime content, initial placement(or compaction) condition, initial specific surface area and curing time. The predictive capacity of the proposed dimensional models was examined and validated by statistical techniques. The proposed dimensional models contain a limited number of fitting parameters, which can be calibrated by minimal experimental effort and hence implemented for predictive purposes.展开更多
为了探究浸水环境下石灰-聚丙烯纤维改良盐渍土的强度特性与水稳定性,通过室内试验对不同浸水天数下改良土的抗压强度与体积膨胀率进行研究并采用响应曲面法对土体改良工艺进行优化。结果表明,在浸水环境下,石灰与纤维可以有效提升改良...为了探究浸水环境下石灰-聚丙烯纤维改良盐渍土的强度特性与水稳定性,通过室内试验对不同浸水天数下改良土的抗压强度与体积膨胀率进行研究并采用响应曲面法对土体改良工艺进行优化。结果表明,在浸水环境下,石灰与纤维可以有效提升改良土的抗压强度与水稳定性,最优石灰掺量与最优纤维掺量分别为8%、0.4%。通过控制土体中的含盐量以及盐分中Na_(2)SO_(4)所占比例也可使改良土的抗压强度与水稳定性得到有效提升,最优含盐量以及Na_(2)SO_(4)的最优占比分别为1%、25%。随着浸水天数的增加,改良土的抗压强度呈现出先大幅度降低后缓慢增加的趋势,而体积膨胀率则呈现出逐渐增大后趋于平缓的趋势。经过响应曲面优化后得出改良土的最大抗压强度为602.542 k Pa,与其相对应的最佳试验变量组合为:石灰掺量7.41%、纤维掺量0.38%、含盐量1.27%、盐分中Na_(2)SO_(4)所占比例24.91%;最小体积膨胀率为0.288%,与其相对应的最佳试验变量组合为:石灰掺量6.53%、纤维掺量0.38%、含盐量1.21%、盐分中Na_(2)SO_(4)所占比例29.92%。研究成果可为盐渍土地区的工程建设提供理论依据与参数支持,并且达到对盐渍土资源化利用的目的。展开更多
基金Project(05YFSYSF00300) supported by the Natural Science Foundation of Tianjin
文摘Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.
文摘To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed.
文摘Mortars provide the continuity required for the stability and exclusion of weather elements in masonry assemblies. But because of the heterogeneity of the mortar, its mechanism of behaviour under different load effects is dependent on the properties of the constituents of the mortar. The aim of paper is to determine the effect sand grading for various cement-sand-lime mortar designations (BS) and strength classes (EC) on the compressive strength and stiffness of mortar. Two silica sands;HST 95 and HST60 were used to make mortars in three strength classes: M2, M4 and M6, corresponding to mortar designations iv, iii and ii respectively. The results show that mortar made with the HST60 sand (coarser grading) usually resulted in mortar with a higher compressive strength and stiffness. The One Way ANOVA analysis of both compressive strength and stiffness at a significance level of 5% on the effect of sand grading on the two parameters also shows that they are both significant. There is also strong evidence of a linear correlation between the stiffness and compressive strength. The results indicate that in order to replicate full scale behaviour of masonry at model scales, the grading of fine aggregate in the models should be similar so as to properly model full scale behavior.
文摘Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering.
文摘Lime-fly ash loess is composed of fly ash, lime and loess. It is a new material in subgrade backfill. Main factors to influence the strength of lime-fly ash loess are age, amount of fly ash and lime, ratio of fly ash to lime (1:K), and moisture content. In order to observe the effect of each factor influencing the strength of lime-fly ash loess and find out the relationship between each other, this paper adopted orthogonal test design to conduct unconfined compression tests. The result shows that 90d strength can be considered to calculate the strength of lime-fly ash loess in practice. And the most important factor to influence the 90d strength of lime-fly ash loess is the amount of fly ash and lime, the second is moisture content, and then is the ratio of fly ash to lime (1:K). These achievements are significant to the design and application of lime-fly ash loess in subgrade construction of loess areas.
文摘The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric analysis was used to characterize the various stabilizers and the clay used, and tests of resistance and water absorption were also carried out. The clay was found to be an aluminosilicate (15.55% to 17.17% Al2O3 and 42.12% to 44.15% SiO2). The lime contains 90.84% CaO and the cement has 17.80% SiO2, 3.46% Al2O3, 2.43% Fe2O3 and 58.47% CaO in the combined form of tricalcium silicate, dicalcium silicate, tricalcium aluminate and ferro-tetra calcium aluminate. The results showed that the insertion of locally available stabilizers (lime and cement) improved the strength of the material by almost 80% when the lime was increased from 0% to 14% for 14 days. For compressed cement, a 65% increase in strength was observed under the same conditions. Strength increases with drying time, with a 52% increase in strength at 28 days compared to 14 days. Furthermore, compressed cement bricks have a more compact structure, absorbing very little water (32%). In view of all these results, cement appears to be the best stabilizer, and compression improves compressive strength and reduces water absorption.
基金the financial support given by CAPES-Brasil,Fundao Araucria do Paran and CNPq
文摘The soil of the Guabirotuba geological formation(Paraná Basin, Brazil) has physico-mechanical properties which are not suitable for its utilization in pavement construction, in protection of hillsides and slopes, or as shallow foundation support. Treatment of this soil by lime addition would improve its usability. The present context intends to determine the ratio between the splitting tensile strength(q;)and the unconfined compressive strength(q;) of clayey soil in the metropolitan region of Curitiba City,which has been treated with different lime contents and curing times. The control parameters evaluated include lime content(L), curing time(t), moisture content(w), and ratio of porosity to volumetric lime content(η/L;). It was observed that the q;/q;ratio is between 0.17 and 0.2 in relation to the curing time,and an exponential relation exists between them. Meanwhile, the unconfined compressive strength of lime-treated soil was found to be approximately four times the initial value.
文摘This experimental research is focused on the effect of concrete made by incorporating lime treated Palm Kernel Shell (PKS) & Sugarcane Bagasse Ash (SCBA) as partial replacements of coarse aggregates and Ordinary Portland Cement (OPC) respectively. An experimental analysis for concrete grade 30 with a mix design ratio of 1:1.97:3.71 of cement:fine aggregates:coarse aggregates with a constant water to cement ratio of 0.5, was used. Physical tests such as workability on fresh concrete and water absorption on hardened concrete of each batch were carried out. Mechanical tests like compressive strength and split tensile strength were carried out on hardened concrete cubes (100 mm × 100 mm × 100 mm) and cylinders (100 mm × 200 mm) at 7 and 28 days. The experimental results obtained in this study indicate the possibility of using up 15% of lime treated PKS and 10% of SCBA for production of structural concrete.
文摘Curing of cement based products such as concrete and mortar, is very important to achieve good strength and durable products. However the curing environment plays a pivotal role in the overall quality of cement based products in terms of strength development. ASTM C192 allows moist curing either in a fog room or under water. However, these must meet ASTM C511 which controls temperature, and specifically for water curing, the concentration of calcium ions in the curing solution. Unfortunately in many parts of the world, water curing literally means curing in tap water. This is done primarily because there is a lack of knowledge or ignorance regarding the mobility and roll of calcium hydroxide in the curing process. To illustrate the differences, in this study, straight ASTM Type I/II Portland cement and that mixed with powdered waste clay bricks as a cement extender were used to prepare two different batches of mortars. The chemical properties of the powdered waste clay brick met the ASTM C618 standard specifications for Class N pozzolans. Both mortar specimens were cured under two different environment comprising of either water and lime saturated water. Mortar specimens were tested for compressive strength at 3, 7, 14 and 28 days of either curing conditions. Test results indicated that mortar specimens cured in lime saturated water obtained higher strength than those cured in fresh water at all ages of curing. Statistical inference drawn from ANOVA testing showed that curing conditions had significant impact on strength development of the blended and unblended cement systems. The study recommends that testing of concrete and mortar samples and other research related works be performed in lime saturated water other than fresh water.
基金supported by the laboratory of soil mechanics of Abadgaran Negin Jonoobshargh Company
文摘Lime concrete and lime treatment are two attractive techniques for geotechnical engineers.However,researches have rarely been carried out to study the effects of moisture and capillary action due to increasing groundwater level on geotechnical properties of lime concrete.The aim of this study is to investigate the effects of curing time and degree of saturation on some of geotechnical properties of lime concrete such as unconfined compressive strength(UCS),secant modulus(ES),failure strain,brittleness index(IB),and deformability index(ID) using unconfined compression tests.First of all,geotechnical and chemical properties of used materials were determined.After curing times of 14 d,28 d,45 d,and 60 d in laboratory condition,the specimens were exposed to saturation levels ranging from 0 to 100%.The results showed that the moisture and curing time have significant effects on the properties of lime concrete.Based on the results of scanning electron micrograph(SEM) test,it was observed that the specimen was characterized by a rather well-structured matrix since both the filling of a large proportion of the coarse-grained soil voids by clay and the pozzolanic activity of lime led to retaining less pore water in the specimen,increasing the UCS and ES,and consequently resisting against swelling and shrinkage of the clay soil.Moreover,due to the pozzolanic reactions and reduction of water,by increasing the curing time and decreasing the degrees of saturation,UCS,ES,and IBincreased,and IDdecreased.Based on the experimental results,a phenomenological model was used to develop equations for predicting the properties in relation to the ratio of degree of saturation/curing time.The results showed that there was a good correlation(almost R2> 90%) between the measured parameters and the estimated ones given by the predicted equations.
文摘The present discussion aims at complementing the original work published by Baldovino et al.(2018) by outlining a novel point of view. In light of the inherent limitations associated with the empirical model suggested in the original article, the dimensional analysis technique was introduced to the soil-lime strength problem, thereby leading to the development of simple and physically meaningful dimensional models capable of predicting the unconfined compressive and splitting tensile strengths of compacted soil-lime mixtures as a function of the mixture's index properties, i.e. lime content, initial placement(or compaction) condition, initial specific surface area and curing time. The predictive capacity of the proposed dimensional models was examined and validated by statistical techniques. The proposed dimensional models contain a limited number of fitting parameters, which can be calibrated by minimal experimental effort and hence implemented for predictive purposes.
文摘为了探究浸水环境下石灰-聚丙烯纤维改良盐渍土的强度特性与水稳定性,通过室内试验对不同浸水天数下改良土的抗压强度与体积膨胀率进行研究并采用响应曲面法对土体改良工艺进行优化。结果表明,在浸水环境下,石灰与纤维可以有效提升改良土的抗压强度与水稳定性,最优石灰掺量与最优纤维掺量分别为8%、0.4%。通过控制土体中的含盐量以及盐分中Na_(2)SO_(4)所占比例也可使改良土的抗压强度与水稳定性得到有效提升,最优含盐量以及Na_(2)SO_(4)的最优占比分别为1%、25%。随着浸水天数的增加,改良土的抗压强度呈现出先大幅度降低后缓慢增加的趋势,而体积膨胀率则呈现出逐渐增大后趋于平缓的趋势。经过响应曲面优化后得出改良土的最大抗压强度为602.542 k Pa,与其相对应的最佳试验变量组合为:石灰掺量7.41%、纤维掺量0.38%、含盐量1.27%、盐分中Na_(2)SO_(4)所占比例24.91%;最小体积膨胀率为0.288%,与其相对应的最佳试验变量组合为:石灰掺量6.53%、纤维掺量0.38%、含盐量1.21%、盐分中Na_(2)SO_(4)所占比例29.92%。研究成果可为盐渍土地区的工程建设提供理论依据与参数支持,并且达到对盐渍土资源化利用的目的。