期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Triaxial tension and compression tests on saturated lime-treated plastic clay upon consolidated undrained conditions
1
作者 Kuchvichea Kan Bertrand François 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3328-3342,共15页
Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefi... Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefit for the stability of earth structures.This study investigates the tensile and shear strengths of an untreated and lime-treated(3%of lime)plastic clay at different curing times(7 d,56 d and 300 d),through triaxial tension and compression tests.Triaxial tension tests are performed using“diabolo-shaped”soil samples with reduced central section,such that the central part of the specimen can be under axial tension while both end-sections remain in axial compression.Consolidated undrained(CU)conditions with measurement of pore water pressure allow analyzing the failure conditions through effective stress and total stress approaches.The results of triaxial tension tests reveal that the failure occurs under tensile mode at low confining pressure while extensional shear failure mode is observed under higher confining pressure.Consequently,a classical Mohr-Coulomb shear failure criterion must be combined with a cut-off tensile strength criterion that is not affected by the confining pressure.When comparing shear failure under compression and tension,a slight anisotropy is observed. 展开更多
关键词 Tensile strength Consolidated undrained(CU)triaxial test lime-treated soils Failure criterion
下载PDF
Dynamic characteristics of lime-treated expansive soil under cyclic loading 被引量:8
2
作者 Min Wang Lingwei Kong +1 位作者 Chong Zhao Meng Zang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第4期352-359,共8页
To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, c... To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, confining pressure, vibration frequency, consolidation ratio, and cycle number on the dynamic characteristics were discussed. Experimental results indicate that specimens at low moisture contents tend to damage along the 30~ shear plane and they present brittle failure, while saturated specimens show swelling phenomenon and plastic failure. A redtiction in cohesion has been observed for unsaturated samples at large number of cycles, while it is opposite for the internal friction angle. For the saturated specimens, both the cohesion and internal friction angle decrease with increasing number of cycles. 展开更多
关键词 expansive soil lime-treated soil dynamic characteristics low lime proportion
下载PDF
Optimizing the evolution of strength for lime-stabilized rammed soil 被引量:2
3
作者 Jair de Jesus Arrieta Baldovino Ronaldo Luis dos Santos Izzo +1 位作者 Eclesielter Batista Moreira Juliana Lundgren Rose 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期882-891,共10页
In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the por... In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the porosity/volumetric lime content ratio(η/Liv)as the main parameter.η/Liv represents the volume of void influenced by compaction effort and lime volume.The evolution of qu was analyzed for each soil using the coefficient of determination as the optimization parameter.Aiming at providing adjustments to the mechanical resistance values,the η/Liv parameter was modified to η/LivC using the adjustment exponent C(to make qu-η/Liv variation rates compatible).The results show that with the decrease of η/LivC.qu increases potentially and the optimized values of C were 0.14-0.18.The mechanical resistance data show similar trends between qu and η/LivC for the studied silty soil-ground lime mixtures,which were cured at ambient temperature(23±2)℃ with different curing times of 28-360 d.Finally,optimized equations were presented using the normalized strengths and the proposed optimization model,which show 6% error and 95% acceptability on average. 展开更多
关键词 lime-treated SOIL Void/lime ratio Ground improvement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部