For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun...For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.展开更多
证明了{n(16n^2+4n+3)/16n^2-4~n+3^(1/2) integral from 0 to π/2 sin^nxdx}为严格单调增加数列,且极限为π/2^(1/2),因而得π(16n^2+36n+23)/2(n+1)(16n^2+28n+15)^(1/2)<integral from 0 to π/2 sin^nxdx<π(16n^2-4n+3)/2n(...证明了{n(16n^2+4n+3)/16n^2-4~n+3^(1/2) integral from 0 to π/2 sin^nxdx}为严格单调增加数列,且极限为π/2^(1/2),因而得π(16n^2+36n+23)/2(n+1)(16n^2+28n+15)^(1/2)<integral from 0 to π/2 sin^nxdx<π(16n^2-4n+3)/2n(16n^2+4n+3)^(1/2).展开更多
文摘For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.
文摘证明了{n(16n^2+4n+3)/16n^2-4~n+3^(1/2) integral from 0 to π/2 sin^nxdx}为严格单调增加数列,且极限为π/2^(1/2),因而得π(16n^2+36n+23)/2(n+1)(16n^2+28n+15)^(1/2)<integral from 0 to π/2 sin^nxdx<π(16n^2-4n+3)/2n(16n^2+4n+3)^(1/2).