A novel dense diffusion barrier material(Y_(x)Sr_(1−x)Ti_(0.9)In_(0.1)O_(3−δ)(x=0.03,0.05,0.07))was prepared by using a sol-gel method.The crystal structure,microstructures,electrical conductivity and ionic conductiv...A novel dense diffusion barrier material(Y_(x)Sr_(1−x)Ti_(0.9)In_(0.1)O_(3−δ)(x=0.03,0.05,0.07))was prepared by using a sol-gel method.The crystal structure,microstructures,electrical conductivity and ionic conductivity of barrier material were characterized.The results show that the samples exhibit the formation of cubic perovskite structure phase.The increase of Y-doping amount on A-site improved electrical conductivity and sinterability of materials.A limiting current oxygen sensor based on Y_(0.07)Sr_(0.97)Ti_(0.9)In_(0.1)O_(3–δ)as a dense diffusion barrier shows excellent sensing performance.The linear relationship between limiting current logIL and 1000/T can described logIL=4.603,8−3.847,5·1,000/T.At 750°C,0.25%≤x(O_(2))≤5.0%,the linear relationship between limiting current(IL)and oxygen amount(x(O_(2)))can described as I_(L)=7.047,6+3.875,1·x(O_(2)).展开更多
基金supported by the National Natural Science Foundation of China(Nos.51962004 and 51562009).
文摘A novel dense diffusion barrier material(Y_(x)Sr_(1−x)Ti_(0.9)In_(0.1)O_(3−δ)(x=0.03,0.05,0.07))was prepared by using a sol-gel method.The crystal structure,microstructures,electrical conductivity and ionic conductivity of barrier material were characterized.The results show that the samples exhibit the formation of cubic perovskite structure phase.The increase of Y-doping amount on A-site improved electrical conductivity and sinterability of materials.A limiting current oxygen sensor based on Y_(0.07)Sr_(0.97)Ti_(0.9)In_(0.1)O_(3–δ)as a dense diffusion barrier shows excellent sensing performance.The linear relationship between limiting current logIL and 1000/T can described logIL=4.603,8−3.847,5·1,000/T.At 750°C,0.25%≤x(O_(2))≤5.0%,the linear relationship between limiting current(IL)and oxygen amount(x(O_(2)))can described as I_(L)=7.047,6+3.875,1·x(O_(2)).