[Objective] This study aimed to investigate the effects of different salt concentrations on the root vitality of Limonium bicolor (Bunge) Kuntze. [Method] Limonium bicolor (Bunge) Kuntze was treated with 0, 100, 2...[Objective] This study aimed to investigate the effects of different salt concentrations on the root vitality of Limonium bicolor (Bunge) Kuntze. [Method] Limonium bicolor (Bunge) Kuntze was treated with 0, 100, 200 and 400 mmol/L NaCl, respectively. After two weeks, root vitality, biomass and other physiological indicators were measured. [Result] Salt stress had significant influences on the growth of roots. Root vitality of Limonium bicolor increased firstly and reduced gradually with the increase of salt concentration. [Conclusion] The results indicate that Limonium bicolor has certain salt tolerance ability at low salt concentrations; under relatively high salt concentrations, Limonium bicolor roots can maintain high vitality; however, with the continuous increase of salt concentration, Limonium bicolor roots are damaged, with decreasing vitality.展开更多
[Objective] The aim was to clone Syntaxin genes in Limonium sinense Kuntze. [Method] Limonium sinense Kuntze leaves were used as materials and total RNA was extracted and transcribed reversely. Nested primers were des...[Objective] The aim was to clone Syntaxin genes in Limonium sinense Kuntze. [Method] Limonium sinense Kuntze leaves were used as materials and total RNA was extracted and transcribed reversely. Nested primers were designed based on EST sequences at 5’ region of Syntaxin, and cDNA obtained through reverse reaction was taken as the template. Sequences of Syntaxin gene at 3’ region were obtained through two rounds of PCR amplifications. [Result] DNA fragments (1 096 bp) were obtained. For LsSyntaxin, open reading frame (ORF) was 816 bp and the encoded amino acids were 271. The relative molecular weight of Syntaxin was 30 254.3 Da and isoelectric point in theory was 5.55. [Conclusion] Syntaxin genes from Limonium sinense Kuntze were cloned. The research laid foundation for the study on Syntaxin gene function in Limonium sinense Kuntze and salt-secreted process.展开更多
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt.Here,we characterize a nucleus-localized C3HC4(RING-HC)-...The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt.Here,we characterize a nucleus-localized C3HC4(RING-HC)-type zinc finger protein of L.bicolor named RING ZINC FINGER PROTEIN 1(LbRZF1).LbRZF1 was expressed in salt glands and in response to NaCl treatment.LbRZF1 showed no E3 ubiquitin ligase activity.The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L.bicolor.lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type,whereas LbRZF1-overexpressing lines had opposite phenotypes,in keeping with the overall salt tolerance of these plants.A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2(LbCAT2)and the transcription factor LbMYB113,leading to their stabilization.Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance.The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte.We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription.The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.展开更多
基金Supported by National High-Technology Research and Development Program(863)(2007AA091701)~~
文摘[Objective] This study aimed to investigate the effects of different salt concentrations on the root vitality of Limonium bicolor (Bunge) Kuntze. [Method] Limonium bicolor (Bunge) Kuntze was treated with 0, 100, 200 and 400 mmol/L NaCl, respectively. After two weeks, root vitality, biomass and other physiological indicators were measured. [Result] Salt stress had significant influences on the growth of roots. Root vitality of Limonium bicolor increased firstly and reduced gradually with the increase of salt concentration. [Conclusion] The results indicate that Limonium bicolor has certain salt tolerance ability at low salt concentrations; under relatively high salt concentrations, Limonium bicolor roots can maintain high vitality; however, with the continuous increase of salt concentration, Limonium bicolor roots are damaged, with decreasing vitality.
基金Supported by National Natural Science Foundation of China(30870199)Shandong Natural Science Foundation(Y2007D34+1 种基金ZR2011CM006)Key Projects of Shandong Natural Science Foundation(2010GNC10937)~~
文摘[Objective] The aim was to clone Syntaxin genes in Limonium sinense Kuntze. [Method] Limonium sinense Kuntze leaves were used as materials and total RNA was extracted and transcribed reversely. Nested primers were designed based on EST sequences at 5’ region of Syntaxin, and cDNA obtained through reverse reaction was taken as the template. Sequences of Syntaxin gene at 3’ region were obtained through two rounds of PCR amplifications. [Result] DNA fragments (1 096 bp) were obtained. For LsSyntaxin, open reading frame (ORF) was 816 bp and the encoded amino acids were 271. The relative molecular weight of Syntaxin was 30 254.3 Da and isoelectric point in theory was 5.55. [Conclusion] Syntaxin genes from Limonium sinense Kuntze were cloned. The research laid foundation for the study on Syntaxin gene function in Limonium sinense Kuntze and salt-secreted process.
基金supported by Natural Science Research Foundation of Shandong Province(project no.ZR2023YQ021 and ZR2020QC031)National Natural Science Research Foundation of China(project nos.32000209 and 32170301)China Postdoctoral Science Foundation(project no.2020M672114)。
文摘The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt.Here,we characterize a nucleus-localized C3HC4(RING-HC)-type zinc finger protein of L.bicolor named RING ZINC FINGER PROTEIN 1(LbRZF1).LbRZF1 was expressed in salt glands and in response to NaCl treatment.LbRZF1 showed no E3 ubiquitin ligase activity.The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L.bicolor.lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type,whereas LbRZF1-overexpressing lines had opposite phenotypes,in keeping with the overall salt tolerance of these plants.A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2(LbCAT2)and the transcription factor LbMYB113,leading to their stabilization.Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance.The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte.We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription.The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.