In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the d...In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the distribution network.To effectively improve the lean management of LVSA,the paper proposes an identification method for the UTR based on Local Selective Combination in ParallelOutlier Ensembles algorithm(LSCP).Firstly,the voltage data is reconstructed based on the information entropy to highlight the differences in between.Then,the LSCP algorithmcombines four base outlier detection algorithms,namely Isolation Forest(I-Forest),One-Class Support VectorMachine(OC-SVM),Copula-Based Outlier Detection(COPOD)and Local Outlier Factor(LOF),to construct the identification model of UTR.This model can accurately detect users’differences in voltage data,and identify users with wrong UTR.Meanwhile,the key input parameter of the LSCP algorithm is determined automatically through the line loss rate,and the influence of artificial settings on recognition accuracy can be reduced.Finally,thismethod is verified in the actual LVSA where the recall and precision rates are 100%compared with othermethods.Furthermore,the applicability to the LVSAs with difficult data acquisition and the voltage data error in transmission are analyzed.The proposed method adopts the ensemble learning framework and does not need to set the detection threshold manually.And it is applicable to the LVSAs with difficult data acquisition and high voltage similarity,which improves the stability and accuracy of UTR identification in LVSA.展开更多
为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类...为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类,将相同工况的线损节点归并,然后将各类工况的节点线损数据导入RRCF算法中分析,通过删除和插入样本节点,并对插入节点后评判模型的复杂度进行计算,得到线损异常节点的评分值,进一步找出线损异常的节点。最终,通过有关实例验证所提方法的准确性与有效性。展开更多
文摘In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the distribution network.To effectively improve the lean management of LVSA,the paper proposes an identification method for the UTR based on Local Selective Combination in ParallelOutlier Ensembles algorithm(LSCP).Firstly,the voltage data is reconstructed based on the information entropy to highlight the differences in between.Then,the LSCP algorithmcombines four base outlier detection algorithms,namely Isolation Forest(I-Forest),One-Class Support VectorMachine(OC-SVM),Copula-Based Outlier Detection(COPOD)and Local Outlier Factor(LOF),to construct the identification model of UTR.This model can accurately detect users’differences in voltage data,and identify users with wrong UTR.Meanwhile,the key input parameter of the LSCP algorithm is determined automatically through the line loss rate,and the influence of artificial settings on recognition accuracy can be reduced.Finally,thismethod is verified in the actual LVSA where the recall and precision rates are 100%compared with othermethods.Furthermore,the applicability to the LVSAs with difficult data acquisition and the voltage data error in transmission are analyzed.The proposed method adopts the ensemble learning framework and does not need to set the detection threshold manually.And it is applicable to the LVSAs with difficult data acquisition and high voltage similarity,which improves the stability and accuracy of UTR identification in LVSA.
文摘为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类,将相同工况的线损节点归并,然后将各类工况的节点线损数据导入RRCF算法中分析,通过删除和插入样本节点,并对插入节点后评判模型的复杂度进行计算,得到线损异常节点的评分值,进一步找出线损异常的节点。最终,通过有关实例验证所提方法的准确性与有效性。