Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of t...Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network.Network calculus theory,which has been successfully applied to assess the real-time performance of packet-switched networks,is used to analyze the networks.To properly describe the activity of switches,a novel approach of modeling data flows into or out of switches is addressed.Based on our model,a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived.Finally,the relative simulation results are demonstrated.These results agree well with the analytical results,and thus they validate the data flow modeling techniques.展开更多
Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetr...Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetric PbTaS2 is a topological nodal line semimetal. In the absence of spin-orbit coupling (SOC), one band inversion happens around a high symmetrical H point, which leads to forming a nodal line. The nodal line is robust and protected against gap opening by mirror reflection symmetry even with the inclusion of strong SOC. In addition, it also hosts exotic drumhead surface states either inside or outside the projected nodal ring depending on surface termination. The robust bulk nodal lines and drumhead-like surface states with SOC in PbTaS2 make it a potential candidate material for exploring the freakish properties of the topological nodal line fermions in condensed matter systems.展开更多
Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul...Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.展开更多
Node line semimetals(NLSMs) were characterized by one-dimensional band crossings in their bulk electronic structures.The nontrivial band topology of NLSM gives rise to "drumhead" surface electronic excitatio...Node line semimetals(NLSMs) were characterized by one-dimensional band crossings in their bulk electronic structures.The nontrivial band topology of NLSM gives rise to "drumhead" surface electronic excitations that exhibits exotic physical properties.The symmetries of crystalline provide the needed protection of node line from being gapped out by the perturbations that preserve the symmetry.The progress of NLSM in tungsten-based materials is reviewed with an emphasis on their symmetry-based protection,characteristic electronic band structures and their response to the spin-orbit coupling(SOC)and breaking of time-reversal symmetry.The potential exploration directions of tungsten-based NLSM in the future are also discussed.展开更多
Topological nodal line(DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states(DNSSs) with an unusually high electronic density n...Topological nodal line(DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states(DNSSs) with an unusually high electronic density near the Fermi level. High catalytic active sites generally associated with high electronic densities around the Fermi level, high carrier mobility and a close-to-zero free energy of the adsorbed state of hydrogen(?G_(H*)≈0) are prerequisite to design alternative of precious platinum for catalyzing electrochemical hydrogen production from water. By combining these two aspects, it is natural to consider if the DNLs are a good candidate for the hydrogen evolution reaction(HER) or not because its DNSSs provide a robust platform to activate chemical reactions. Here, through first-principles calculations we reported a new DNL TiSi-type family, exhibiting a closed Dirac nodal line due to the linear band crossings in k_y=0 plane.The hydrogen adsorbed state on the surface yields ?G_(H*) to be almost zero and the topological charge carries participate in HER. The results highlight a new routine to design topological quantum catalyst utilizing the topological DNL-induced surface bands as active sites, rather than edge sites-, vacancy-,dopant-, strain-, or heterostructure-created active sites.展开更多
文摘Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network.Network calculus theory,which has been successfully applied to assess the real-time performance of packet-switched networks,is used to analyze the networks.To properly describe the activity of switches,a novel approach of modeling data flows into or out of switches is addressed.Based on our model,a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived.Finally,the relative simulation results are demonstrated.These results agree well with the analytical results,and thus they validate the data flow modeling techniques.
基金Supported by the National Natural Science Foundation of China under Grant No 11504366the National Basic Research Program of China under Grant Nos 2015CB921503 and 2016YFE0110000
文摘Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetric PbTaS2 is a topological nodal line semimetal. In the absence of spin-orbit coupling (SOC), one band inversion happens around a high symmetrical H point, which leads to forming a nodal line. The nodal line is robust and protected against gap opening by mirror reflection symmetry even with the inclusion of strong SOC. In addition, it also hosts exotic drumhead surface states either inside or outside the projected nodal ring depending on surface termination. The robust bulk nodal lines and drumhead-like surface states with SOC in PbTaS2 make it a potential candidate material for exploring the freakish properties of the topological nodal line fermions in condensed matter systems.
文摘Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.
基金supported by the National Natural Foundation of China (NFSC)(Grants No.11574215)。
文摘Node line semimetals(NLSMs) were characterized by one-dimensional band crossings in their bulk electronic structures.The nontrivial band topology of NLSM gives rise to "drumhead" surface electronic excitations that exhibits exotic physical properties.The symmetries of crystalline provide the needed protection of node line from being gapped out by the perturbations that preserve the symmetry.The progress of NLSM in tungsten-based materials is reviewed with an emphasis on their symmetry-based protection,characteristic electronic band structures and their response to the spin-orbit coupling(SOC)and breaking of time-reversal symmetry.The potential exploration directions of tungsten-based NLSM in the future are also discussed.
基金supported by the National Science Fund for Distinguished Young Scholars (51725103)the National Natural Science Foundation of China (51671193 and 51474202)+1 种基金the Science Challenging Project (TZ2016004)All calculations have been performed on the high-performance computational cluster in Shenyang National University Science and Technology Park and the National Supercomputing Center in Guangzhou (TH-2 system) with special program for applied research of the NSFC-Guangdong Joint Fund (the second phase) (U1501501)
文摘Topological nodal line(DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states(DNSSs) with an unusually high electronic density near the Fermi level. High catalytic active sites generally associated with high electronic densities around the Fermi level, high carrier mobility and a close-to-zero free energy of the adsorbed state of hydrogen(?G_(H*)≈0) are prerequisite to design alternative of precious platinum for catalyzing electrochemical hydrogen production from water. By combining these two aspects, it is natural to consider if the DNLs are a good candidate for the hydrogen evolution reaction(HER) or not because its DNSSs provide a robust platform to activate chemical reactions. Here, through first-principles calculations we reported a new DNL TiSi-type family, exhibiting a closed Dirac nodal line due to the linear band crossings in k_y=0 plane.The hydrogen adsorbed state on the surface yields ?G_(H*) to be almost zero and the topological charge carries participate in HER. The results highlight a new routine to design topological quantum catalyst utilizing the topological DNL-induced surface bands as active sites, rather than edge sites-, vacancy-,dopant-, strain-, or heterostructure-created active sites.