A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf...A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.展开更多
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(...In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.展开更多
A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretic...A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretical investigation of the influences of output transmission and incident pump power on thermally induced depolarization loss, the output performance of 946 nm linearly polarized Nd:YAG laser is experimentally studied. By optimizing the transmission of output coupler, a 946 nm linearly polarized continuous-wave single-transverse-mode laser with an output power of 4.2 W and an optical-optical conversion efficiency of 16.8% is obtained, and the measured beam quality factors are M2 = 1.13 and My2 = 1.21. The theoretical prediction is in good agreement with the experimental result.展开更多
Relative biological effectiveness (RBE) is an important quantity in planning particle beam cancer therapy. In general, the RBE describes the biological effectiveness of a given primary beam with respect to a reference...Relative biological effectiveness (RBE) is an important quantity in planning particle beam cancer therapy. In general, the RBE describes the biological effectiveness of a given primary beam with respect to a reference photon irradiation. RBE varies not only for different primary beams but also with depth in the target for a given beam modality. It is not a quantity that easily lends itself to measurements or computation as it depends on many biological and physical quantities. Numerous experiments in vitro using various cell lines and irradiation modalities have shown that a general relationship between RBE and the physical quantity Linear Energy Transfer (LET) exists. Several groups have proposed including LET in the radiation therapy treatment planning instead of the more complicated and elusive RBE. It has been shown that LET is an important quantity to consider in treating radio-resistant tumors. The concept of LET painting has been proposed with the goal of improving tumor control probability (TCP) for hypoxic tumors by focusing high LET radiation on the hypoxic region of the tumor while restricting the surrounding normal tissue to low LET radiation. In order to properly incorporate LET in clinical treatment, it is important to be able to experimentally measure and verify LET distribution. We propose a novel method for measuring LET using a dual chamber methodology exploiting the difference in the observed recombination between air filled ionization chambers (IC) and liquid filled ionization chambers (LIC). The resulting difference in the measured signals will be used to directly extract the relative LET of an actual treatment beam in real time. This paper describes our initial studies of this method, presents preliminary results, and discusses further improvements toward a practical real-time LET measuring device.展开更多
The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned w...The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained.展开更多
The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly...The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly investigated in studies of SEE. The use of a thin detector is an economical way of directly measuring the LET in space. An LET telescope consists of a thin detector as the front detector(D1), along with a back detector that indicates whether D1 was penetrated. The particle radiation effect monitor(PREM) introduced in this paper is designed to categorize the LET into four bins of 0.2–0.4, 0.4–1.0, 1.0–2.0 and 2.0–20 Me V·cm^2/mg, and one integral bin of LET>20 Me V·cm^2/mg. After calibration with heavy ions and Geant4 analysis, the LET boundaries of the first four bins are determined to be 0.236, 0.479, 1.196, 2.254, and 17.551 Me V·cm^2/mg, whereas that of the integral bin is determined to be LET>14.790 Me V·cm^2/mg. The acceptances are calculated by Geant4 analysis as 0.452, 0.451, 0.476, 0.446, and 1.334, respectively. The LET accuracy is shown to depend on the thickness of D1; as D1 is made thinner, the accuracy of the measured values increases.展开更多
简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的...简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的育种思路。与此同时,使用该方法还能够开展植物组织细胞的传能线密度(Linear energy transfer,LET)生物学效应的研究,从理论上及实践上进一步优化该技术。展开更多
基金Supported by the Key Laboratory of Microsatellites,Chinese Academy of Sciences
文摘A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.
文摘In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301401)the Fund for Shanxi "331 Project" Key Subjects Construction,China(Grant No.1331KS)
文摘A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretical investigation of the influences of output transmission and incident pump power on thermally induced depolarization loss, the output performance of 946 nm linearly polarized Nd:YAG laser is experimentally studied. By optimizing the transmission of output coupler, a 946 nm linearly polarized continuous-wave single-transverse-mode laser with an output power of 4.2 W and an optical-optical conversion efficiency of 16.8% is obtained, and the measured beam quality factors are M2 = 1.13 and My2 = 1.21. The theoretical prediction is in good agreement with the experimental result.
文摘Relative biological effectiveness (RBE) is an important quantity in planning particle beam cancer therapy. In general, the RBE describes the biological effectiveness of a given primary beam with respect to a reference photon irradiation. RBE varies not only for different primary beams but also with depth in the target for a given beam modality. It is not a quantity that easily lends itself to measurements or computation as it depends on many biological and physical quantities. Numerous experiments in vitro using various cell lines and irradiation modalities have shown that a general relationship between RBE and the physical quantity Linear Energy Transfer (LET) exists. Several groups have proposed including LET in the radiation therapy treatment planning instead of the more complicated and elusive RBE. It has been shown that LET is an important quantity to consider in treating radio-resistant tumors. The concept of LET painting has been proposed with the goal of improving tumor control probability (TCP) for hypoxic tumors by focusing high LET radiation on the hypoxic region of the tumor while restricting the surrounding normal tissue to low LET radiation. In order to properly incorporate LET in clinical treatment, it is important to be able to experimentally measure and verify LET distribution. We propose a novel method for measuring LET using a dual chamber methodology exploiting the difference in the observed recombination between air filled ionization chambers (IC) and liquid filled ionization chambers (LIC). The resulting difference in the measured signals will be used to directly extract the relative LET of an actual treatment beam in real time. This paper describes our initial studies of this method, presents preliminary results, and discusses further improvements toward a practical real-time LET measuring device.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61574171, 61704127, 11875229,51872251, and 12027813)。
文摘The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained.
基金supported by the National Natural Science Foundation of China(Grant No.41374181)the National Key Scientific Instrument and Equipment Development ProjectsChina(Grant No.2012YQ03014207)
文摘The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly investigated in studies of SEE. The use of a thin detector is an economical way of directly measuring the LET in space. An LET telescope consists of a thin detector as the front detector(D1), along with a back detector that indicates whether D1 was penetrated. The particle radiation effect monitor(PREM) introduced in this paper is designed to categorize the LET into four bins of 0.2–0.4, 0.4–1.0, 1.0–2.0 and 2.0–20 Me V·cm^2/mg, and one integral bin of LET>20 Me V·cm^2/mg. After calibration with heavy ions and Geant4 analysis, the LET boundaries of the first four bins are determined to be 0.236, 0.479, 1.196, 2.254, and 17.551 Me V·cm^2/mg, whereas that of the integral bin is determined to be LET>14.790 Me V·cm^2/mg. The acceptances are calculated by Geant4 analysis as 0.452, 0.451, 0.476, 0.446, and 1.334, respectively. The LET accuracy is shown to depend on the thickness of D1; as D1 is made thinner, the accuracy of the measured values increases.
文摘简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的育种思路。与此同时,使用该方法还能够开展植物组织细胞的传能线密度(Linear energy transfer,LET)生物学效应的研究,从理论上及实践上进一步优化该技术。