High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of w...High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.展开更多
Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high d...Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.展开更多
In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method ...In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.展开更多
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100...The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.展开更多
High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the do...High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.展开更多
Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w...Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.展开更多
In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improv...In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.展开更多
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T...In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.展开更多
Background: Although abduction of the acetabular component is considered to predict factors for polyethylene wear attributable to osteolysis, other radiographic factors have yet to be elucidated. The purpose of the pr...Background: Although abduction of the acetabular component is considered to predict factors for polyethylene wear attributable to osteolysis, other radiographic factors have yet to be elucidated. The purpose of the present study was to evaluate whether anteversion or change in implantation angle of the acetabular component influences polyethylene linear wear by using standing and supine radiographs of the hip joint. Methods: Standing and supine plain anteroposterior radiographs of 62 hip joints in which cementless total hip arthroplasty was performed were examined for polyethylene linear wear rate (mm/year), pelvic inclination, and radiological inclination and anatomic anteversion of the acetabular component. Results: All correlation coefficients of measurements of polyethylene linear wear, pelvic inclination angle, anatomical anteversion angle and radiological inclination angle were calculated highly. And by the three-dimensional numerical analysis, anatomic anteversion of the acetabular component had at least some effect on the degree of polyethylene wear. Conclusion: This study suggests that increased anteversion of the acetabular component reduces polyethylene linear wear in metal-on-polyethylene total hiparthroplasty.展开更多
Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilan...Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.展开更多
In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-f...In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been incorporated into Linear Low Density Polyethylene (LLDPE). The influence of the filler content on </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">thermal and physicomechanical properties of the composites obtained was assessed. The results showed that the incorporation of fibers was able to improve the thermostability of LLDPE/Coffee hulls fibers;comparing the treated fiber composite with untreated fiber composites, the chemical treatment reduces by 58.3% the water absorption, while increasing the elongation and tensile strength by about 48% and 17% respectively. Moreover, due to better interfacial interaction induced by MAPE, the corresponding composite exhibited better properties compared to the untreated fiber composite. Results are indicative of the fact that both mercerization and MAPE (coupling agent) have significant positive effects on the fib</span><span style="font-family:Verdana;">er</span><span style="font-family:Verdana;">-matrix interaction in terms of adhesion, wetting and dispersion, this treatment produced a better fiber distribution and consequently a more uniform composite morphology without voids and gaps between the fibers and the matrix, allowing the possibility to use higher fiber contents (up to 30% wt.) with acceptable mechanical properties.展开更多
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines...To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.展开更多
A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl...A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.展开更多
The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystalli...The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.展开更多
Clinical two-dimensional linear wear rate data for acetabular cup liners fabricated using approved brands of highly cross-linked ultra-high-molecular-weight polyethylene, as reported in 39 articles in the literature, ...Clinical two-dimensional linear wear rate data for acetabular cup liners fabricated using approved brands of highly cross-linked ultra-high-molecular-weight polyethylene, as reported in 39 articles in the literature, were analyzed using a statistical technique called response surface methodology. The output was a series comprising16 acceptable combinations of femoral head diameter (HD), femoral head material (HM), and HXLPE brand (PB), each of which would yield the optimum wear rate (herein taken to be a wear rate of practically zero). An example of such a combination is 28- mm-diameter Oxinium? femoral head articulated against an acetabular cup liner fabricated from ReflectionTM HXLPE. The findings in this work may guide an orthopaedic surgeon’s selection of the combination of HD, HM, and PB to use in a primary total hip joint replacement.展开更多
In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in ri...In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production.展开更多
Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of e...Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively.展开更多
基金supported by the sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C389)the Xinjiang University Doctoral Start-Up Foundation(No.620321029)the Science and Technology Planning Project of State Administration for Market Regulation(No.2022MK201).
文摘High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.
文摘Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.
文摘In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.
文摘The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFC1510802 and 2019YFC1804302)the National Natural Science Foundation of China (Grant No. 41504081)the Fundamental Research Funds for the Central Universities (Grant No. 2019B17214)。
文摘High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.
基金supported by the National Natural Science Foundation of China[31670573]the Innovation Training Program of Northeast Forestry University[201810225398].
文摘Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.
文摘In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.
文摘In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.
文摘Background: Although abduction of the acetabular component is considered to predict factors for polyethylene wear attributable to osteolysis, other radiographic factors have yet to be elucidated. The purpose of the present study was to evaluate whether anteversion or change in implantation angle of the acetabular component influences polyethylene linear wear by using standing and supine radiographs of the hip joint. Methods: Standing and supine plain anteroposterior radiographs of 62 hip joints in which cementless total hip arthroplasty was performed were examined for polyethylene linear wear rate (mm/year), pelvic inclination, and radiological inclination and anatomic anteversion of the acetabular component. Results: All correlation coefficients of measurements of polyethylene linear wear, pelvic inclination angle, anatomical anteversion angle and radiological inclination angle were calculated highly. And by the three-dimensional numerical analysis, anatomic anteversion of the acetabular component had at least some effect on the degree of polyethylene wear. Conclusion: This study suggests that increased anteversion of the acetabular component reduces polyethylene linear wear in metal-on-polyethylene total hiparthroplasty.
基金Project(20574020) supported by the National Natural Science Foundation of ChinaProject(20061001) supported by the Opening Project of the Key Laboratory of Polymer Processing Engineering, Ministry of Education, ChinaProject (20060106-2) supported by Guangdong Key Projects
文摘Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.
文摘In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been incorporated into Linear Low Density Polyethylene (LLDPE). The influence of the filler content on </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">thermal and physicomechanical properties of the composites obtained was assessed. The results showed that the incorporation of fibers was able to improve the thermostability of LLDPE/Coffee hulls fibers;comparing the treated fiber composite with untreated fiber composites, the chemical treatment reduces by 58.3% the water absorption, while increasing the elongation and tensile strength by about 48% and 17% respectively. Moreover, due to better interfacial interaction induced by MAPE, the corresponding composite exhibited better properties compared to the untreated fiber composite. Results are indicative of the fact that both mercerization and MAPE (coupling agent) have significant positive effects on the fib</span><span style="font-family:Verdana;">er</span><span style="font-family:Verdana;">-matrix interaction in terms of adhesion, wetting and dispersion, this treatment produced a better fiber distribution and consequently a more uniform composite morphology without voids and gaps between the fibers and the matrix, allowing the possibility to use higher fiber contents (up to 30% wt.) with acceptable mechanical properties.
文摘To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.
文摘A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.
基金Project(20050335050) supported by the Special Foundation of Education Ministry of ChinaProject(10472105) supported by the National Natural Science Foundation of China
文摘The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.
文摘Clinical two-dimensional linear wear rate data for acetabular cup liners fabricated using approved brands of highly cross-linked ultra-high-molecular-weight polyethylene, as reported in 39 articles in the literature, were analyzed using a statistical technique called response surface methodology. The output was a series comprising16 acceptable combinations of femoral head diameter (HD), femoral head material (HM), and HXLPE brand (PB), each of which would yield the optimum wear rate (herein taken to be a wear rate of practically zero). An example of such a combination is 28- mm-diameter Oxinium? femoral head articulated against an acetabular cup liner fabricated from ReflectionTM HXLPE. The findings in this work may guide an orthopaedic surgeon’s selection of the combination of HD, HM, and PB to use in a primary total hip joint replacement.
文摘In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production.
文摘Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively.