Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satisfies an integral convergence condition or weak stability on a basis,then t...Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satisfies an integral convergence condition or weak stability on a basis,then there exists a surjective linear isometry U:X→Y such that∥f(x)−Ux∥=o(∥x∥)as∥x∥→∞.This is a generalization about the result of Lindenstrauss and Szankowski on the same finite dimensional Banach spaces without the assumption of surjectivity.As a consequence,we also obtain a stability result forε-isometries which was established by Dilworth.展开更多
Let X, Y be two real Banach spaces and ε≥0. A map f : X → Y is said to be a standard ε-isometry if│││f/(x) - f(y)││ - ]ix - Y││x-y││ ε for all x,y C X and with f(O) = O. We say that a pair of Ban...Let X, Y be two real Banach spaces and ε≥0. A map f : X → Y is said to be a standard ε-isometry if│││f/(x) - f(y)││ - ]ix - Y││x-y││ ε for all x,y C X and with f(O) = O. We say that a pair of Banach spaces (X, Y) is stable if there exists γ〉 0 such that, for every such ε and every standard v-isometry f : X → Y, there is a bounded linear operator T : L(f) → f(X) → X so that ││Tf(x) - x││ ≤γε for all x E X. X(Y) is said to be universally left-stable if (X, Y) is always stable for every Y(X). In this paper, we show that if a dual Banach space X is universally left-stable, then it is isometric to a complemented w*-closed subspace of ∞ (1) for some set F, hence, an injective space; and that a Banach space is universally left-stable if and only if it is a cardinality injective space; and universally left-stability spaces are invariant.展开更多
基金Supported by National Natural Science Foundation of China(11731010 and 12071388)。
文摘Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satisfies an integral convergence condition or weak stability on a basis,then there exists a surjective linear isometry U:X→Y such that∥f(x)−Ux∥=o(∥x∥)as∥x∥→∞.This is a generalization about the result of Lindenstrauss and Szankowski on the same finite dimensional Banach spaces without the assumption of surjectivity.As a consequence,we also obtain a stability result forε-isometries which was established by Dilworth.
基金Supported by National Natural Science Foundation of China(Grant Nos.11071201 and 11001231)
文摘Let X, Y be two real Banach spaces and ε≥0. A map f : X → Y is said to be a standard ε-isometry if│││f/(x) - f(y)││ - ]ix - Y││x-y││ ε for all x,y C X and with f(O) = O. We say that a pair of Banach spaces (X, Y) is stable if there exists γ〉 0 such that, for every such ε and every standard v-isometry f : X → Y, there is a bounded linear operator T : L(f) → f(X) → X so that ││Tf(x) - x││ ≤γε for all x E X. X(Y) is said to be universally left-stable if (X, Y) is always stable for every Y(X). In this paper, we show that if a dual Banach space X is universally left-stable, then it is isometric to a complemented w*-closed subspace of ∞ (1) for some set F, hence, an injective space; and that a Banach space is universally left-stable if and only if it is a cardinality injective space; and universally left-stability spaces are invariant.