The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of...The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
针对自适应正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中线性最小均方误差(linear minimum mean square error,LMMSE)算法复杂度高、数据传输速率低问题,采用改进LMMSE算法对配电网信道状态进行了信道估计,通...针对自适应正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中线性最小均方误差(linear minimum mean square error,LMMSE)算法复杂度高、数据传输速率低问题,采用改进LMMSE算法对配电网信道状态进行了信道估计,通过和LMMSE算法对比,该改进LMMSE的计算复杂度相比LMMSE算法已大大地降低,在配电网信道估计的时间上节省8 s,大大缩短了信道估计的时间。展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program)(No.2001AA 123014)
文摘The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘针对自适应正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中线性最小均方误差(linear minimum mean square error,LMMSE)算法复杂度高、数据传输速率低问题,采用改进LMMSE算法对配电网信道状态进行了信道估计,通过和LMMSE算法对比,该改进LMMSE的计算复杂度相比LMMSE算法已大大地降低,在配电网信道估计的时间上节省8 s,大大缩短了信道估计的时间。
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.