This paper proposes an adaptive howling canceller using notch filter and 2-tap linear predictor, where howling consists of a single sinusoidal signal whose magnitude is much greater than other frequency’s magnitudes....This paper proposes an adaptive howling canceller using notch filter and 2-tap linear predictor, where howling consists of a single sinusoidal signal whose magnitude is much greater than other frequency’s magnitudes. The employed 2-tap linear predictor can quickly detect howling due to its high convergence speed. Although the output signal of the 2-tap linear predictor cannot be directly used as one of a howling canceller, we can obtain the frequency of howling from the filter coefficient. We utilize the filter coefficient of the 2-tap linear predictor to design a notch filter which achieves a very narrow elimination band. The designed notch filter removes only howling and retains other desired signals. Simulation results show that the proposed adaptive howling canceller can quickly detect and effectively remove howling.展开更多
It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of t...It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.展开更多
Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, th...Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.展开更多
文摘This paper proposes an adaptive howling canceller using notch filter and 2-tap linear predictor, where howling consists of a single sinusoidal signal whose magnitude is much greater than other frequency’s magnitudes. The employed 2-tap linear predictor can quickly detect howling due to its high convergence speed. Although the output signal of the 2-tap linear predictor cannot be directly used as one of a howling canceller, we can obtain the frequency of howling from the filter coefficient. We utilize the filter coefficient of the 2-tap linear predictor to design a notch filter which achieves a very narrow elimination band. The designed notch filter removes only howling and retains other desired signals. Simulation results show that the proposed adaptive howling canceller can quickly detect and effectively remove howling.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDZ047)
文摘It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.
文摘Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.