期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
New Linkage with Linear Actuator for Tracking PV Systems with Large Angular Stroke
1
作者 VISA Ion DIACONESCU Dorin +2 位作者 SAULESCU Radu VATASESCU Monica BURDUHOS Bogdan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期744-751,共8页
This paper focuses on the development of an optimized photovoltaic tracking system involving low-cost, relative simple mechanisms, with linear actuators able to insure strokes comparable with those resulted when using... This paper focuses on the development of an optimized photovoltaic tracking system involving low-cost, relative simple mechanisms, with linear actuators able to insure strokes comparable with those resulted when using gear rotary actuators. Starting with a rhombus linkage, with a linear actuator on the diagonal used for the elevation motion till 90°, a new performance solution is generated. This new linkage allows large angular strokes by using an asymmetric rhombus and an eccentrically positioned linear actuator. The paper can be divided in three main parts. Firstly the kinematical modeling of the new linkage is addressed, which permits the establishing of the linkage dimensions according to two adjustable parameters (k2, k5). Using the resulted correlations, in the second part the linkage synthesis algorithm is developed; the steps followed in this algorithm are presented in a numerical application considering a tracked PV platform, where the azimuthal vertical movement is obtained with the new proposed rhomboidal linkage. In the last part of the paper an analysis is done with the aim of determining the PV platform tracking efficiency (which represents the ratio between the received and the available beam solar energy) using the new linkage, in the meteorological conditions of Brasov, Romania implementation site. 展开更多
关键词 solar tracking linkage linear actuator angular stroke transmission angle
下载PDF
Loss Analysis of Electromagnetic Linear Actuator Coupling Control Electromagnetic Mechanical System
2
作者 Jiayu Lu Qijing Qin +2 位作者 Cao Tan Bo Li Xinyu Fan 《Energy Engineering》 EI 2021年第6期1741-1754,共14页
As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidiscipli... As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidisciplinary method was proposed for revealing the influence mechanism of load on EMLA’s loss.The motion trajectory of EMLA is planned through tracking differentiator,an adaptive robust control was adopted to compensate the influence of load on motion trajectory.A control-electromagnetic-mechanical coupling model was established and verified experimentally.The influence laws of load change on EMLA’s loss,loss composition and loss distribution were analyzed quantitatively.The results show that the data error of experiment,and simulation result of input energy,mechanical work,and iron loss is less than 3%.The iron loss accounts for less than 54.9%of the total loss under no-load condition,while the iron loss increases with the increase of load.For iron loss distribution,only the percentage of inner yoke keeps increasing with the increase of load.The composition and distribution of loss are the basis of thermal analysis and design. 展开更多
关键词 Multidisciplinary methodology electromagnetic linear actuator loss analysis control method coupling model
下载PDF
Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion
3
作者 Haiying WEN Jianxiong ZHU +5 位作者 Hui ZHANG Min DAI Bin LI Zhisheng ZHANG Weiliang XU Ming CONG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期53-65,共13页
Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses.A cable-driven linear actuator(CDLA)capable of bidirectional motion is proposed in this study to de... Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses.A cable-driven linear actuator(CDLA)capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion.The CDLA presents remarkable advantages,such as lightweight and high stiffness structure,in using cable amplification and pulley systems.This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot(SMAR)to solve existing problems,such as bulky driving linkage and position change of the muscle’s origin.Stiffness analysis and performance experiment validate the CDLA’s efficiency,with its stiffness reaching 1379.6 N/mm(number of cable parts n=4),which is 21.4 times the input wire stiffness.Accordingly,the CDLA’s force transmission efficiencies in two directions are 84.5%and 85.9%.Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses. 展开更多
关键词 masticatory robot CABLE-DRIVEN linear actuator parallel robot stiffness analysis
原文传递
Dynamic performance of linear electromagnetic actuators in a stray magnetic field:theoretical analysis and experimental verification
4
作者 王如梦 杨勇 +1 位作者 王绍宇 张明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第12期213-222,共10页
Linear electromagnetic actuators(LEAs) are widely used in tokamaks,but they are extremely sensitive to and are prone to fail in a high-strength stray magnetic field(SMF),which is usually a concomitant with tokamaks.In... Linear electromagnetic actuators(LEAs) are widely used in tokamaks,but they are extremely sensitive to and are prone to fail in a high-strength stray magnetic field(SMF),which is usually a concomitant with tokamaks.In this paper,a multi-physics coupling analysis model of LEA,including magnetic field,electric circuit and mechanical motion,is proposed,and the dynamic characteristics of LEAs in SMFs are studied in detail based on the proposed model.The failure mechanism of LEAs in SMFs is revealed,and the influence of SMFs on the dynamic performance of LEAs is studied and quantified.It is shown that the failure threshold of the LEA selected in this work under the rated condition is 27 mT and 14 mT in the positive and negative direction,respectively.Under a typical SMF of 10 mT in the negative direction,the closing time of the LEA will be extended by 40%,while its opening time will be shortened by about 10%.Experimental tests are also conducted,which verify the validity of the proposed model and the analysis results.This paper provides a basis for the diamagnetic optimization design of LEA,and it is of great significance to ensure the reliable operation of the tokamak. 展开更多
关键词 linear electromagnetic actuator stray magnetic field dynamic performance collision velocity
下载PDF
Design Optimization and Comparison of Linear Magnetic Actuators under Different Topologies 被引量:1
5
作者 Zhijian Ling Jinghua Ji +1 位作者 Tao Zeng Wenxiang Zhao 《Chinese Journal of Electrical Engineering》 CSCD 2020年第1期41-51,共11页
In this study,several types of linear actuators that adopt different permanent-magnet(PM)topologies are studied and compared.These linear actuators are based on the concept of PM magnetic screw transmission,which offe... In this study,several types of linear actuators that adopt different permanent-magnet(PM)topologies are studied and compared.These linear actuators are based on the concept of PM magnetic screw transmission,which offers high force density,high reliability,and overload protection.Using different magnetic configurations and assembly methods,these linear actuators are designed and optimized for a fair comparison.Initially,based on the operating principle and maximum thrust force,the surface-mounted magnetic screw is described and optimized.Furthermore,the embedded magnetic screw,Halbach array magnetic screw,and field modulated magnetic screw are investigated and compared.Their electromagnetic performances,such as thrust force,torque,magnetic losses,and demagnetization effects are analytically assessed and verified using finite-element analysis.Finally,a prototype of the surface-mounted magnetic screw is developed to validate the predictions. 展开更多
关键词 linear actuator magnetic screw high force permanent magnet finite-element analysis
原文传递
Erosion degradation characteristics of a linear electro-hydrostatic actuator under a high-frequency turbulent flow field 被引量:2
6
作者 Yuan LI Shaoping WANG +1 位作者 Mileta M.TOMOVIC Chao ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期914-926,共13页
The paper proposes a performance degradation analysis model based on dynamic erosion wear for a novel Linear Electro-Hydrostatic Actuator(LEHA). Rather than the traditional statistical methods based on degradation d... The paper proposes a performance degradation analysis model based on dynamic erosion wear for a novel Linear Electro-Hydrostatic Actuator(LEHA). Rather than the traditional statistical methods based on degradation data, the method proposed in this paper firstly analyzes the dominant progressive failure mode of the LEHA based on the working principle and working conditions of the LEHA. The Computational Fluid Dynamics(CFD) method, combining the turbulent theory and the micro erosion principle, is used to establish an erosion model of the rectification mechanism. The erosion rates for different port openings, under a time-varying flow field, are obtained. The piecewise linearization method is applied to update the concentration of contaminated particles within the LEHA, in order to gain insight into the erosion degradation process at various stages of degradation. The main contribution of the proposed model is the application of the dynamic concentration of contamination particles in erosion analysis of Electro-Hydraulic Servo Valves(EHSVs), throttle valves, spool valves, and needle valves. The effects of system parameters and working conditions on component wear are analyzed by simulations. The results of the proposed model match the expected degradation process. 展开更多
关键词 Computational fluid dynamics Degradation characteristics Dynamic contaminated particles concentration EROSION linear Electro-Hydrostatic actuator Performance degradation
原文传递
Re-engineering artificial muscle with microhydraulics 被引量:1
7
作者 Jakub Kedzierski Eric Holihan +1 位作者 Rafmag Cabrera Isaac Weaver 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期278-285,共8页
We introduce a new type of actuator,the microhydraulic stepping actuator(MSA),which borrows design and operational concepts from biological muscle and stepper motors.MSAs offer a unique combination of power,efficiency... We introduce a new type of actuator,the microhydraulic stepping actuator(MSA),which borrows design and operational concepts from biological muscle and stepper motors.MSAs offer a unique combination of power,efficiency,and scalability not easily achievable on the microscale.The actuator works by integrating surface tension forces produced by electrowetting acting on scaled droplets along the length of a thin ribbon.Like muscle,MSAs have liquid and solid functional components and can displace a large fraction of their length.The 100μm pitch MSA presented here already has an output power density of over 200 W kg^(−1),rivaling the most powerful biological muscles,due to the scaling of surface tension forces,MSA’s power density grows quadratically as its dimensions are reduced. 展开更多
关键词 artificial muscle ELECTROWETTING linear actuator MICROactuator MICROSYSTEM microhydraulic stepping actuator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部