期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS I:L^1-ERROR ESTIMATES 被引量:7
1
作者 Xin Wen Shi Jin 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第1期1-22,共22页
We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into ... We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into the upwind scheme. We prove that, for initial data with a bounded variation, the numerical solution of the immersed interface upwind scheme converges in L^l-norm to the differential equation with the corresponding interface condition. We derive the one-halfth order L^l-error bounds with explicit coefficients following a technique used in [25]. We also use some inequalities on binomial coefficients proved in a consecutive paper [32]. 展开更多
关键词 linear advection equations Immersed interface upwind scheme Piecewise constant coefficients Error estimate Half order error bound
原文传递
CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS Ⅱ: SOME RELATED BINOMIAL COEFFICIENT INEQUALITIES 被引量:2
2
作者 Xin Wen 《Journal of Computational Mathematics》 SCIE CSCD 2009年第4期474-483,共10页
In this paper we give proof of three binomial coefficient inequalities. These inequalities are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish the L^1-error estimates for the upwind ... In this paper we give proof of three binomial coefficient inequalities. These inequalities are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish the L^1-error estimates for the upwind difference scheme to the linear advection equations with a piecewise constant wave speed and a general interface condition, which were further used to establish the L^1-error estimates for a Hamiltonian-preserving scheme developed in [Jin and Wen, Commun. Math. Sci. 3, (2005), 285-315] to the Liouville equation with piecewise constant potentials [Wen and Jin, SIAM J. Numer. Anal. 46, (2008), 2688-2714]. 展开更多
关键词 Binomial coefficient linear advection equations Immersed interface upwindscheme Piecewise constant coefficients Error estimates.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部