In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction. The necessary and sufficient conditions for...This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction. The necessary and sufficient conditions for linear estimators to be admissible in classes of the homogeneous and non-homogeneous linear estimators, respectively, are obtained under the quadratic loss function. They are generalizations of some existing results in literature.展开更多
Under maids loss, tall paper dicusses the admissibility of homgeneous or nonhomgeneous linear estimators of regresaion coefficient of multivarate linear model in some common classes of estimators, the necessary and su...Under maids loss, tall paper dicusses the admissibility of homgeneous or nonhomgeneous linear estimators of regresaion coefficient of multivarate linear model in some common classes of estimators, the necessary and sufficient conditions are obtained.The results indicate that the admissibility of linear estimetors in multiate linear model is different from the admiedbility of linear estimators in Gauss-Markoff model.展开更多
For the growth curve model with respect to inequality restriction: Y = XBZ +ε,ε(0, σ2V I), trNB ≥0, this paper gives some necessary and sufficient conditions for the linear estimator of KBL to be admissible in...For the growth curve model with respect to inequality restriction: Y = XBZ +ε,ε(0, σ2V I), trNB ≥0, this paper gives some necessary and sufficient conditions for the linear estimator of KBL to be admissible in the class of homogeneous linear estimators LH and nonhomogeneous linear estimators LI, respectively, under the quadratic loss function tr(d(Y) - KBL)'(d(Y) - KBL).展开更多
We study tile local linear estimator for tile drift coefficient of stochastic differential equations driven by α-stable Levy motions observed at discrete instants. Under regular conditions, we derive the weak consis-...We study tile local linear estimator for tile drift coefficient of stochastic differential equations driven by α-stable Levy motions observed at discrete instants. Under regular conditions, we derive the weak consis- tency and central limit theorem of the estimator. Compared with Nadaraya-Watson estimator, the local linear estimator has a bias reduction whether the kernel function is symmetric or not under different schemes. A silnu- lation study demonstrates that the local linear estimator performs better than Nadaraya-Watson estimator, especially on the boundary.展开更多
Suppose Y - N(β, σ^2 In), where β ∈ R^n and σ^2 〉 0 are unknown. We study the admissibility of linear estimators of mean vector under a quadratic loss function. A necessary and sufficient condition of the admi...Suppose Y - N(β, σ^2 In), where β ∈ R^n and σ^2 〉 0 are unknown. We study the admissibility of linear estimators of mean vector under a quadratic loss function. A necessary and sufficient condition of the admissible linear estimator is given.展开更多
For the general fixed effects linear model: Y = X_T+ε, ε~N(0, V), V≥0, weobtain the necessary and sufficient conditions for LY +a to be admissible for a linear estimablefunction S_r in the class of all estimators ...For the general fixed effects linear model: Y = X_T+ε, ε~N(0, V), V≥0, weobtain the necessary and sufficient conditions for LY +a to be admissible for a linear estimablefunction S_r in the class of all estimators under the loss function (d -- Sr)'D(d --Sr), whereD≥0 is known. For the general random effects linear model: Y = Xβ+ε,(βε)~N((Aα 0), (V_(11)V_(12)V_(21)V_(22))), ∧= XV_(11)X'+XV_(12)+ V_(21)X+V_(22)≥0, we also get the necessaryand sufficient conditions for LY+a to be admissible for a linear estimable function Sα+Qβin the class of all estimators under the loss function (d-Sα-Qβ)'D(d-Sα-Qβ).whereD≥0 is known.展开更多
A generalization of Zellner’s balanced loss function is proposed. General admissibility in a general multivariate linear model is investigated under the generalized balanced loss function. And the sufficient and nece...A generalization of Zellner’s balanced loss function is proposed. General admissibility in a general multivariate linear model is investigated under the generalized balanced loss function. And the sufficient and necessary conditions for linear estimators to be generally admissible in classes of homogeneous and nonhomogeneous linear estimators are given, respectively.展开更多
By using the vector-method of matrix, we study Growth Curve Model with respect to linear constraint. Under matrix loss function and vector loss function, we obtain necessary and sufficient conditions for admissibility...By using the vector-method of matrix, we study Growth Curve Model with respect to linear constraint. Under matrix loss function and vector loss function, we obtain necessary and sufficient conditions for admissibility of linear estimators of parameters in the inhomogeneous linear class.展开更多
This paper considers the linear model effected by random disturbance,Y=XB+ε,where [~B_ε]~([^(AΘ)_0],VΣ),and ΘTATX TN XAΘΣ.It gives a definition for general admissible estimator of a linear function SΘ + GB of...This paper considers the linear model effected by random disturbance,Y=XB+ε,where [~B_ε]~([^(AΘ)_0],VΣ),and ΘTATX TN XAΘΣ.It gives a definition for general admissible estimator of a linear function SΘ + GB of random regression coefficients and parameters.The necessary and sufficient conditions for LY and LY + C to be general admissible estimators of SΘ + GB in the class of both homogenous and non-homogenous linear estimators are obtained.The conclusion is not dependent of whether or not SΘ + GB is estimable.展开更多
In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness c...In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.展开更多
This paper is concerned with the optimal linear estimation problem for linear discrete-time stochastic systems with random measurement delays. A new model that describes the random delays is constructed where possible...This paper is concerned with the optimal linear estimation problem for linear discrete-time stochastic systems with random measurement delays. A new model that describes the random delays is constructed where possible the largest delay is bounded. Based on this new model, the optimal linear estimators including filter, predictor and smoother are developed via an innovation analysis approach. The estimators are recursively computed in terms of the solutions of a Riccati difference equation and a Lyapunov difference equation. The steady-state estimators are also investigated. A sufficient condition for the convergence of the optimal linear estimators is given. A simulation example shows the effectiveness of the proposed algorithms.展开更多
In this paper, we study the issue of admissibility of linear estimated functions of parameters in the multivariate linear model with respect to inequality constraints under a matrix loss and a matrix balanced loss. Un...In this paper, we study the issue of admissibility of linear estimated functions of parameters in the multivariate linear model with respect to inequality constraints under a matrix loss and a matrix balanced loss. Under the matrix loss, when the model is not constrained, the results in the class of non-homogeneous linear estimators [Xie, 1989, Chinese Sci. Bull., 1148-1149; Xie, 1993, J. Multivariate Anal., 1071-1074] showed that the admissibility under the matrix loss and the trace loss is equivalent. However, when the model is constrained by the inequality constraints, we find this equivalency is not tenable, our result shows that the admissibility of linear estimator does not depend on the constraints again under this matrix loss, but it is contrary under the trace loss [Wu, 2008, Linear Algebra Appl., 2040-2048], and it is also relative to the constraints under another matrix loss [He, 2009, Linear Algebra Appl., 241-250]. Under the matrix balanced loss, the necessary and sufficient conditions that the linear estimators are admissible in the class of homogeneous and non-homogeneous linear estimators are obtained, respectively. These results will support the theory of admissibility on the linear model with inequality constraints.展开更多
In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the mea...In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the measurement and the target state increases with the introduction of the Doppler measurement.Therefore,target tracking in the Doppler radar is a nonlinear filtering problem.In order to handle this problem,the Kalman filter form of best linear unbiased estimation(BLUE)with position measurements is proposed,which is combined with the sequential filtering algorithm to handle the Doppler measurement further,where the statistic characteristic of the converted measurement error is calculated based on the predicted information in the sequential filter.Moreover,the algorithm is extended to the maneuvering target tracking case,where the interacting multiple model(IMM)algorithm is used as the basic framework and the model probabilities are updated according to the BLUE position filter and the sequential filter,and the final estimation is a weighted sum of the outputs from the sequential filters and the model probabilities.Simulation results show that compared with existing approaches,the proposed algorithm can realize target tracking with preferable tracking precision and the extended method can achieve effective maneuvering target tracking.展开更多
The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of ...The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of the radiated noise. To eliminate this, the track estimation is necessary. In the DPS method, we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method. Meanwhile, the emitted and recorded time of each pulse are also acquired. Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing. The simulated results confirm that the DPS improves the performance of the previous double source spacing method. The simulated experiments were carried out using a moving battery car to further evaluate its performance. When the target is 40-60m away, the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6° and 3.4m, respectively. And the average deviation of estimated velocity is around 0.25m/s.展开更多
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he...Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.展开更多
The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-squ...The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-square estimation method, a new way to extend short-term data to long-term ones is developed. The long-term data about concerning sea areas can be constructed via a series of long-term data obtained from neighbor oceanographic stations, through relevance analysis of different data series. It is effective to cover the insufficiency of time series prediction method's overdependence upon the length of data series, as well as the limitation of variable numbers adopted in multiple linear regression model. The storm surge data collected from three oceanographic stations located in Shandong Peninsula are taken as examples to analyze the number-selection effect of reference oceanographic stations(adjacent to the concerning sea area) and the correlation coefficients between sea sites which are selected for reference and for engineering projects construction respectively. By comparing the N-year return-period values which are calculated from observed raw data and processed data which are extended from finite data series by means of the linear mean-square estimation method, one can draw a conclusion that this method can give considerably good estimation in practical ocean engineering, in spite of different extreme value distributions about raw and processed data.展开更多
In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear met...In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.展开更多
This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an...This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
基金Supported by Pre-Study Program of NBRP (2003CCA02400)NSFC (10671007)NSFC (60772036),China
文摘This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction. The necessary and sufficient conditions for linear estimators to be admissible in classes of the homogeneous and non-homogeneous linear estimators, respectively, are obtained under the quadratic loss function. They are generalizations of some existing results in literature.
文摘Under maids loss, tall paper dicusses the admissibility of homgeneous or nonhomgeneous linear estimators of regresaion coefficient of multivarate linear model in some common classes of estimators, the necessary and sufficient conditions are obtained.The results indicate that the admissibility of linear estimetors in multiate linear model is different from the admiedbility of linear estimators in Gauss-Markoff model.
文摘For the growth curve model with respect to inequality restriction: Y = XBZ +ε,ε(0, σ2V I), trNB ≥0, this paper gives some necessary and sufficient conditions for the linear estimator of KBL to be admissible in the class of homogeneous linear estimators LH and nonhomogeneous linear estimators LI, respectively, under the quadratic loss function tr(d(Y) - KBL)'(d(Y) - KBL).
基金supported by National Natural Science Foundation of China(Grant Nos.11171303 and 11071213)the Specialized Research Fund for the Doctor Program of Higher Education(Grant No.20090101110020)
文摘We study tile local linear estimator for tile drift coefficient of stochastic differential equations driven by α-stable Levy motions observed at discrete instants. Under regular conditions, we derive the weak consis- tency and central limit theorem of the estimator. Compared with Nadaraya-Watson estimator, the local linear estimator has a bias reduction whether the kernel function is symmetric or not under different schemes. A silnu- lation study demonstrates that the local linear estimator performs better than Nadaraya-Watson estimator, especially on the boundary.
基金This work is supported by The NNSF of China with Nos.10071090 and 10271013
文摘Suppose Y - N(β, σ^2 In), where β ∈ R^n and σ^2 〉 0 are unknown. We study the admissibility of linear estimators of mean vector under a quadratic loss function. A necessary and sufficient condition of the admissible linear estimator is given.
文摘For the general fixed effects linear model: Y = X_T+ε, ε~N(0, V), V≥0, weobtain the necessary and sufficient conditions for LY +a to be admissible for a linear estimablefunction S_r in the class of all estimators under the loss function (d -- Sr)'D(d --Sr), whereD≥0 is known. For the general random effects linear model: Y = Xβ+ε,(βε)~N((Aα 0), (V_(11)V_(12)V_(21)V_(22))), ∧= XV_(11)X'+XV_(12)+ V_(21)X+V_(22)≥0, we also get the necessaryand sufficient conditions for LY+a to be admissible for a linear estimable function Sα+Qβin the class of all estimators under the loss function (d-Sα-Qβ)'D(d-Sα-Qβ).whereD≥0 is known.
基金supported by the Excellent Youth Talents Foundation of University of Anhui (Grant Nos.2011SQRL127 and 2012SQRL028ZD)
文摘A generalization of Zellner’s balanced loss function is proposed. General admissibility in a general multivariate linear model is investigated under the generalized balanced loss function. And the sufficient and necessary conditions for linear estimators to be generally admissible in classes of homogeneous and nonhomogeneous linear estimators are given, respectively.
文摘By using the vector-method of matrix, we study Growth Curve Model with respect to linear constraint. Under matrix loss function and vector loss function, we obtain necessary and sufficient conditions for admissibility of linear estimators of parameters in the inhomogeneous linear class.
基金the National Natural Science Foundation of China (No. 40574003)
文摘This paper considers the linear model effected by random disturbance,Y=XB+ε,where [~B_ε]~([^(AΘ)_0],VΣ),and ΘTATX TN XAΘΣ.It gives a definition for general admissible estimator of a linear function SΘ + GB of random regression coefficients and parameters.The necessary and sufficient conditions for LY and LY + C to be general admissible estimators of SΘ + GB in the class of both homogenous and non-homogenous linear estimators are obtained.The conclusion is not dependent of whether or not SΘ + GB is estimable.
文摘In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.
基金supported by the Natural Science Foundation of China (No. 60874062)the Program for New Century Excellent Talents in University(No. NCET-10-0133)that in Heilongjiang Province (No.1154-NCET-01)
文摘This paper is concerned with the optimal linear estimation problem for linear discrete-time stochastic systems with random measurement delays. A new model that describes the random delays is constructed where possible the largest delay is bounded. Based on this new model, the optimal linear estimators including filter, predictor and smoother are developed via an innovation analysis approach. The estimators are recursively computed in terms of the solutions of a Riccati difference equation and a Lyapunov difference equation. The steady-state estimators are also investigated. A sufficient condition for the convergence of the optimal linear estimators is given. A simulation example shows the effectiveness of the proposed algorithms.
基金Supported in part by the National Natural Science Foundation of China under Grant No.61070236 and11271147
文摘In this paper, we study the issue of admissibility of linear estimated functions of parameters in the multivariate linear model with respect to inequality constraints under a matrix loss and a matrix balanced loss. Under the matrix loss, when the model is not constrained, the results in the class of non-homogeneous linear estimators [Xie, 1989, Chinese Sci. Bull., 1148-1149; Xie, 1993, J. Multivariate Anal., 1071-1074] showed that the admissibility under the matrix loss and the trace loss is equivalent. However, when the model is constrained by the inequality constraints, we find this equivalency is not tenable, our result shows that the admissibility of linear estimator does not depend on the constraints again under this matrix loss, but it is contrary under the trace loss [Wu, 2008, Linear Algebra Appl., 2040-2048], and it is also relative to the constraints under another matrix loss [He, 2009, Linear Algebra Appl., 241-250]. Under the matrix balanced loss, the necessary and sufficient conditions that the linear estimators are admissible in the class of homogeneous and non-homogeneous linear estimators are obtained, respectively. These results will support the theory of admissibility on the linear model with inequality constraints.
基金This work was supported by the Basic Research Operation Foundation for Central University(ZYGX2016J039).
文摘In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the measurement and the target state increases with the introduction of the Doppler measurement.Therefore,target tracking in the Doppler radar is a nonlinear filtering problem.In order to handle this problem,the Kalman filter form of best linear unbiased estimation(BLUE)with position measurements is proposed,which is combined with the sequential filtering algorithm to handle the Doppler measurement further,where the statistic characteristic of the converted measurement error is calculated based on the predicted information in the sequential filter.Moreover,the algorithm is extended to the maneuvering target tracking case,where the interacting multiple model(IMM)algorithm is used as the basic framework and the model probabilities are updated according to the BLUE position filter and the sequential filter,and the final estimation is a weighted sum of the outputs from the sequential filters and the model probabilities.Simulation results show that compared with existing approaches,the proposed algorithm can realize target tracking with preferable tracking precision and the extended method can achieve effective maneuvering target tracking.
文摘The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of the radiated noise. To eliminate this, the track estimation is necessary. In the DPS method, we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method. Meanwhile, the emitted and recorded time of each pulse are also acquired. Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing. The simulated results confirm that the DPS improves the performance of the previous double source spacing method. The simulated experiments were carried out using a moving battery car to further evaluate its performance. When the target is 40-60m away, the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6° and 3.4m, respectively. And the average deviation of estimated velocity is around 0.25m/s.
基金support for this study was provided by the National Natural Science Foundation of China (No.40776006)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060423009)the Science and Technology Development Program of Shandong Province (Grant No.2008GGB01099)
文摘Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379195 and 41476078)the Natural Science Foundation of Shandong Province(Grant No.ZR2013EEM034)+2 种基金the Scientific Research Foundation of Science Technology Department of Zhejiang Province(Grant No.2015C34013)the Science Research Program of Zhoushan(Grant No.2014C41003)the Innovation Fund for Graduate Student of Shandong Province(Grant No.SDYY12152)
文摘The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-square estimation method, a new way to extend short-term data to long-term ones is developed. The long-term data about concerning sea areas can be constructed via a series of long-term data obtained from neighbor oceanographic stations, through relevance analysis of different data series. It is effective to cover the insufficiency of time series prediction method's overdependence upon the length of data series, as well as the limitation of variable numbers adopted in multiple linear regression model. The storm surge data collected from three oceanographic stations located in Shandong Peninsula are taken as examples to analyze the number-selection effect of reference oceanographic stations(adjacent to the concerning sea area) and the correlation coefficients between sea sites which are selected for reference and for engineering projects construction respectively. By comparing the N-year return-period values which are calculated from observed raw data and processed data which are extended from finite data series by means of the linear mean-square estimation method, one can draw a conclusion that this method can give considerably good estimation in practical ocean engineering, in spite of different extreme value distributions about raw and processed data.
文摘In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.
基金Research supported By AFOSC, USA, under Contract F49620-85-0008oy NNSFC of China.
文摘This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.