期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of Tilted Angle on Effective Linear Energy Transfer in Single Event Effect Tests for Integrated Circuits at 130 nm Technology Node 被引量:2
1
作者 张乐情 卢健 +5 位作者 胥佳灵 刘小年 戴丽华 徐依然 毕大炜 张正选 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期119-122,共4页
A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf... A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained. 展开更多
关键词 SOI Influence of Tilted Angle on Effective linear Energy Transfer in Single Event Effect Tests for Integrated Circuits at 130 nm Tec
下载PDF
Direct measurement of the linear energy transfer of ions in silicon for space application 被引量:2
2
作者 CHEN HongFei YU XiangQian +7 位作者 SHAO SiPei SHI WeiHong CUI ZhanGuo XIANG HongWen HAO ZhiHua ZOU JiQing ZHONG WeiYing ZOU Hong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期128-134,共7页
The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly... The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly investigated in studies of SEE. The use of a thin detector is an economical way of directly measuring the LET in space. An LET telescope consists of a thin detector as the front detector(D1), along with a back detector that indicates whether D1 was penetrated. The particle radiation effect monitor(PREM) introduced in this paper is designed to categorize the LET into four bins of 0.2–0.4, 0.4–1.0, 1.0–2.0 and 2.0–20 Me V·cm^2/mg, and one integral bin of LET>20 Me V·cm^2/mg. After calibration with heavy ions and Geant4 analysis, the LET boundaries of the first four bins are determined to be 0.236, 0.479, 1.196, 2.254, and 17.551 Me V·cm^2/mg, whereas that of the integral bin is determined to be LET>14.790 Me V·cm^2/mg. The acceptances are calculated by Geant4 analysis as 0.452, 0.451, 0.476, 0.446, and 1.334, respectively. The LET accuracy is shown to depend on the thickness of D1; as D1 is made thinner, the accuracy of the measured values increases. 展开更多
关键词 linear energy transfer measurement LET single event effect space radiation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部