We consider the following non-linear elliptic equation △u+ f(x,u)=0,x∈K on fractal domains with zero-Dirichlet boundary conditions, where K is self-similar fractal, △ is the Laplacian defined on K. f(x, t) is...We consider the following non-linear elliptic equation △u+ f(x,u)=0,x∈K on fractal domains with zero-Dirichlet boundary conditions, where K is self-similar fractal, △ is the Laplacian defined on K. f(x, t) is asymptotically linear as t→ ∞. We get the non-trivial and non-negative solution by using Mountain Pass lemma.展开更多
This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block co...This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.展开更多
The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
Various fractal morphologies are obtained by introducing noise reduc-tion, tansential and radial probabilities into DLA (diffusion-limited aggregation)medel. As the noise is reduced, perimeter sites with extremely sm...Various fractal morphologies are obtained by introducing noise reduc-tion, tansential and radial probabilities into DLA (diffusion-limited aggregation)medel. As the noise is reduced, perimeter sites with extremely small values of lo-cal field gradient ar展开更多
The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence...The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.展开更多
基金Supported by the National Natural Science Foundation of China(10025107)
文摘We consider the following non-linear elliptic equation △u+ f(x,u)=0,x∈K on fractal domains with zero-Dirichlet boundary conditions, where K is self-similar fractal, △ is the Laplacian defined on K. f(x, t) is asymptotically linear as t→ ∞. We get the non-trivial and non-negative solution by using Mountain Pass lemma.
基金supported by the National Natural Science Foundation of China(61171170) the Natural Science Foundation of Anhui Province(1408085QF115)
文摘This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
文摘Various fractal morphologies are obtained by introducing noise reduc-tion, tansential and radial probabilities into DLA (diffusion-limited aggregation)medel. As the noise is reduced, perimeter sites with extremely small values of lo-cal field gradient ar
基金supported by the National Natural Science Foundation of China (No.10871156)the Fund of Xi'an Jiaotong University (No.2009xjtujc30)
文摘The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.