In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ...With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.展开更多
A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that ...A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.展开更多
Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work ...Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.展开更多
<div style="text-align:justify;"> A generalized optical filterless approach to achieve photonic generation of frequency 16-tupling millimeter-wave (mm-wave) signal based on two cascaded dual-parallel M...<div style="text-align:justify;"> A generalized optical filterless approach to achieve photonic generation of frequency 16-tupling millimeter-wave (mm-wave) signal based on two cascaded dual-parallel Mach-Zehnder modulators (DPMZMs) is presented. A theoretical analysis leading to the operating conditions to achieve frequency 16-tupling is developed. Different modulation indices (MIs) can be implemented to achieve the frequency multiplication by adjusting the delay of tunable optical delay line (TODL). It is confirmed by simulation that the proposed scheme is effective, and the radio frequency spurious suppression ratio (RFSSR) of the generated frequency 16-tupling signal can be as high as 40 dB when the sub-MZMs have extinction ratios of 30 dB. Influencing factors such as extinction ratio, DC bias drift, phase shift deviation and RF voltage deviation on the performance of optical sideband suppression ratio (OSSR) and RFSSR are also investigated. </div>展开更多
In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa...In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).展开更多
<div style="text-align:justify;"> A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat ...<div style="text-align:justify;"> A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications. </div>展开更多
基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对线性调频(Linear Frequency Modulated,LFM)信号参数进行估计,问题关键是确定FRFT最佳阶数,根据误差迭代思想提出新的参数估计算法,该算法利用归一化带宽和旋转角的转化关系...基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对线性调频(Linear Frequency Modulated,LFM)信号参数进行估计,问题关键是确定FRFT最佳阶数,根据误差迭代思想提出新的参数估计算法,该算法利用归一化带宽和旋转角的转化关系,由估计误差推算角度差值,有效降低了运算量,不需要调频斜率正负的先验信息,改进的对数搜索算法可以进一步提高参数估计结果的稳定性和可靠性。仿真结果表明,信噪比在-8 dB以上时该方法在高效率的前提下仍具有良好的参数估计性能,平均估计误差在1%以内,估计结果接近Cramer-Rao下限,满足工程实时处理需求。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
基金supported by the National Basic Research Program of China(2011CB707001)the Fundamental Research Funds for the Central Universities(106112015CDJXY500001CDJZR165505)
文摘With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.
文摘A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.
文摘Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.
文摘<div style="text-align:justify;"> A generalized optical filterless approach to achieve photonic generation of frequency 16-tupling millimeter-wave (mm-wave) signal based on two cascaded dual-parallel Mach-Zehnder modulators (DPMZMs) is presented. A theoretical analysis leading to the operating conditions to achieve frequency 16-tupling is developed. Different modulation indices (MIs) can be implemented to achieve the frequency multiplication by adjusting the delay of tunable optical delay line (TODL). It is confirmed by simulation that the proposed scheme is effective, and the radio frequency spurious suppression ratio (RFSSR) of the generated frequency 16-tupling signal can be as high as 40 dB when the sub-MZMs have extinction ratios of 30 dB. Influencing factors such as extinction ratio, DC bias drift, phase shift deviation and RF voltage deviation on the performance of optical sideband suppression ratio (OSSR) and RFSSR are also investigated. </div>
基金supported by the Regional Joint Fund for Basic and Applied Basic Research of Guangdong Province(2019B1515120009)the Defense Basic Scientific Research Program(61424132005).
文摘In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).
文摘<div style="text-align:justify;"> A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications. </div>